DOE/OR/21548-051

(CONTRACT NO. DE-AC05-860R21548)

CHEMICAL SOIL DATA REPORT TO SUPPORT INTERIM RESPONSE ACTIONS, CONSTRUCTION STAGING AREA, AND ADMINISTRATION BUILDING

For The:

Weldon Spring Site Remedial Action Project Weldon Spring, Missouri

Prepared By MK-Ferguson Company **FEBRUARY**, 1989

REV. 0

U.S. Department Of EnergyOak Ridge Operations OfficeWeldon Spring Site Remedial Action Project

Printed in the United States of America. Available from the National Technical Information Service, NTIS, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161

NTIS Price Codes - Printed copy: A05 Microfiche: A01

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, products, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

CHEMICAL SOIL DATA REPORT TO SUPPORT INTERIM RESPONSE ACTIONS, CONSTRUCTION STAGING AREA AND ADMINISTRATION BUILDING

FEBRUARY 1989

Prepared for:
U.S. DEPARTMENT OF ENERGY
Oak Ridge Operations Office
Under Contract No. DE-AC05-860R21548

bу

MK-FERGUSON COMPANY
Project Management Contractor
and

JACOBS ENGINEERING GROUP INC.
Route 2, Highway 94 South
St. Charles, Missouri 63303

ABSTRACT

Five activities are planned to improve environmental conditions or to improve facilities at the Weldon Spring Site. Each activity must be evaluated for potential environmental impacts. Chemical soil contamination was potentially present in each affected area. A sampling program was designed and implemented to evaluate chemical soil conditions. Samples were analyzed for nitroaromatic compounds, metals, inorganic anions, semi-volatile and volatile organic compounds, pesticides, and PCBs.

This investigation documented low concentrations of semi-volatile organic compounds, pesticides, PCBs and nitroaromatics. Higher concentrations of nitrate, sulfate and some metals were also detected.

The contaminants detected are consistent with past operations at the WSS. The concentrations of contaminants do not significantly impact the proposed activities. Data from this investigation has been incorporated into the planning and documentation activities for each activity.

TABLE OF CONTENTS

SE	CTION																	P	<u>AGE</u>
1	INTRO	ODUCTION				•		•		•			•	•	•	•			1
	1.1	PURPOSE				•					•				•	•	•		2
	1.2	SCOPE .				•		•		•	•	•	•	•	•	•	•	•	2
2	SAMPI	LING AND	ANAI	LYSE	s.	•		•			•	•		•	•	•	•		9
	2.1	SAMPLE	COLLI	ECTI	ON.				•		•	•				•			9
	2.2	EQUIPME	NT DI	ECON	TAMI	NAT	ION	•				•							9
	2.3	SAMPLE 1	HANDI	LING	AND	PR	ESE	RV	AT.	ION	Ī				•				10
	2.4	SAMPLE A	ANAL	YSES															10
	2.5	SAMPLE 1	DESCI	RIPT	ION	•		•	•	•	•	•	•	•	•	•	•	•	10
3	DATA	SUMMARY				•		•		•	•	•	•	•	•	•	•	•	12
	3.1	MATERIA	L STA	AGIN	G AR	EA		•								•	•		14
	3.2	ASH PON	D ISC	DLAT	'ION	DIK	E.												17
	3.3	SOUTHEAS	ST IS	SOLA	TION	DI	KE												19
	3.4	ADMINIS'	TRAT	CON	BUIL	DIN	G.												19
	3.5	CONSTRU	CTIO	N ST	AGIN	G A	REA		•	•	•	•	•	•	•	•	•	•	26
4	DATA	QUALITY	ANAI	LYSI	s .	•		•	•		•	•	•	•	•	•	•	•	27
5	CONCI	LUSIONS						•	•			•	•	•	•	•	•	•	28
RE:	FERENC	CES																	29

LIST OF TABLES

NUMBER	<u>P</u>	PAGE
Table 1	Boring Locations	4
Table 2	Statistical Data for Background Metal	
	Concentrations in Soils at the WSCP/WSRP	14
Table 3	Statistical Data for Background Inorganic	
	Anion Concentrations in Soils at the	
	WSCP/WSRP	16
Table 4	Material Staging Area Data Summary	17
Table 5	Ash Pond Dike Data Summary	19
Table 6	Southeast Isolation Dike Data Summary	21
Table 7	Administration Building Area Data Summary .	22

LIST OF FIGURES

NU	MBER	PAGE
1	Weldon Spring IRA Soil Sampling Locations	. 2
2	Administration Building Location	. 8
3	Administration Building Location and	
	WSOW Features	. 25

LIST OF APPENDICES

- A Soil Sample Description
- B Analytical Data Metals, Inorganic Anions
- C Analytical Detection Limits
- D Analytical Quality Control Data Summary

1 INTRODUCTION

This report addresses three areas proposed for interim remedial action (IRA) and two areas where construction is planned prior to completion of chemical soil characterization. The three IRA areas are the Ash Pond Isolation Dike (AID), the Southeast Drainage Isolation Dike (SID), and the Material Staging Area (MSA). The two construction areas are the locations of the Administration Building (AB) and the construction staging area (CSA). These areas are shown in Figure 1.

The soils in these five areas were sampled in support of the design of the IRAs, to validate previous sampling results, and to evaluate the environmental impact of the IRAs. This report summarizes the analytical data from these samples.

This soil characterization effort was required before the overall chemical soil characterization could be performed. The overall chemical soil characterization program is described fully in the chemical soil characterization sampling plan (MK-F, 1988a). The overall soil sampling rationale is presented in that sampling plan and should be reviewed before attempting to further interpret the analytical data presented in this report.

The three IRA areas were identified during previous investigations as areas which could benefit from small actions not biasing an overall Record of Decision (ROD) on the disposition of the majority of the wastes on site. These IRAs support the overall Weldon Spring Site Remedial Action Program (WSSRAP) and will maintain exposure as low as reasonably achievable. These actions consist of diverting and isolating surface drainage in two areas and constructing a contaminated materials storage area.

FIGURE 1

WELDON SPRING IRA SOIL SAMPLING LOCATIONS

1.1 PURPOSE

The purpose of the soil sampling in each of the areas was to provide data for the design of the IRA and construction activities. Sampling analyses provided information on chemical soil contamination in the areas affected by the isolation and drainage dikes and on the storage area for holding contaminated materials. The results also delineate conditions in the vicinity of the proposed Administration Building and the Construction Staging Area.

1.2 SCOPE

This program was designed to detect chemical soil contamination from the Weldon Spring Ordnance Works (WSOW) and the Weldon Spring Uranium Feed Materials Plant (WSUFMP) in the five areas. The WSOW produced explosives for use in World War II from 1941 to 1945. The WSUFMP processed uranium ore and produced uranium metal from 1956 to 1966. These two facilities comprise the known potential sources for chemical soil contamination.

Radiological contamination in each area is not discussed in this report. Radiological characterization data is presented in Radiological Characterization Reports for each IRA.

This sampling effort consisted of collecting 150 samples from 30 sample locations. Five borings were located in the Material Staging Area, five in the Ash Pond Isolation Dike area, and five in the Southeast Isolation Dike area. Thirteen borings were located around several proposed Administration Building sites, and two borings were located in the Construction Staging Area. Table 1 lists all boring locations, west-north coordinates and boring depths. The location numbers (1-30) correspond to the locations shown in Figure 1. Boring depths were determined by evaluating the depths that will be affected

TABLE 1
BORING LOCATIONS

LOCATION	IRA	COORDINATES	BORING DEPTH
NO.	AREA	WEST, NORTH	(FEET)
1	Material Staging Area	51150, 101207	10
2	Material Staging Area	51137, 101068	12
3	Material Staging Area	51360, 101175	10
4	Material Staging Area	51445, 101065	12
5	Material Staging Area	51500, 101190	12
6	Ash Pond Dike	51308, 100085	10
7	Ash Pond Dike	51150, 100220	10
8	Ash Pond Dike	51125, 100260	10
9	Ash Pond Dike	51100, 100335	10
10	Ash Pond Dike	51180, 100335	7
11	Southeast Isolation Dike	50290, 98700	8
12	Southeast Isolation Dike	50160, 98735	12
13	Southeast Isolation Dike	50140, 98820	8
14	Southeast Isolation Dike	50252, 98800	8
15	Southeast Isolation Dike	50230, 98991	8
16	Administration Building	49000, 99985	8
17	Administration Building	49475, 99985	12
18	Administration Building	49250, 100140	10
19	Administration Building	49172, 100180	8
20	Administration Building	49000, 100180	8
21	Administration Building	49000, 100295	8
22	Administration Building	49080, 100295	10
23	Administration Building	49132, 100440	16
24	Administration Building	49101, 100500	16
25	Administration Building	49000, 100500	12
26	Administration Building	49082, 100570	16
27	Administration Building	49000, 100665	12
28	Administration Building	49160, 100500	12
29	Construction Staging Area	50800, 98150	15
30	Construction Staging Area	50950, 98300	15
P1-1	Phase I - Admin. Building	49500, 99800	6
P1-2	Phase I - Admin. Building	49700, 99500	6

Pl - Phase I Chemical Soil Investigation Location.

by the specific construction activity and the depth of fill in each specific area.

Analytical parameters were selected on the basis of the results of Phase I chemical soil investigation (MK-F, 1988b) and Phase I water quality assessment (MK-F, 1987) which detected elevated concentrations of inorganic anions, metals, and nitroaromatics in several areas of the Weldon Spring Site (WSS). Certain locations were analyzed for Hazardous Substance List (HSL) volatiles, semi-volatiles, pesticides, and PCBs to provide additional information of the affected areas.

A brief description and the previous characterization data for each area is presented in the following subsections. The sampling and analysis methods are described in Section 2. Analytical data and interpretations are presented in Section 3.

1.3 MATERIAL STAGING AREA

The Material Staging Area (MSA) consists of approximately three acres located about 1,100 feet north of Raffinate Pit 3. This area subtends 500 feet by 250 feet and will be used to store contaminated materials from other IRAs, such as Debris Consolidation and Army Vicinity Property cleanup.

Previous investigations (MK-F, 1988b) in the MSA included adequate radiological soils characterization, but used only one borehole for chemical analyses. No chemical contamination was detected in this single borehole. Therefore, additional data were required to more fully characterize any chemical contamination which could be present in this area.

The additional chemical characterization for the MSA consisted of five boreholes drilled to depths of 10 ft to 12 ft with continuous sample collection. These depths exceed the depth of soil disturbance expected from this IRA. Samples were

composited over two-foot intervals in each borehole. All samples were analyzed for metals, inorganic anions (nitrate, sulfate, chloride, and fluoride), and nitroaromatic compounds. Certain locations were analyzed for pesticides, PCBs and semi-volatiles. After sampling, the boreholes were sealed by grouting with a cement-bentonite grout.

1.4 ASH POND ISOLATION DIKE

The Ash Pond Isolation Dike (AID) is proposed to divert surface runoff around the contaminated areas of the South Dump and Ash Pond by means of an earth embankment and drainage channel.

Previously collected information within the affected area consisted of adequate radiological soils characterization data, but only one borehole and three samples were analyzed for chemical parameters (MK-F, 1988b). These analyses indicated slightly elevated nitrate and sulfate levels in the soils. Chemical characterization data was required to evaluate the effects of ponding water on soils in the area affected by this IRA. These data will be used to further define the environmental impacts of the proposed IRA.

Additional characterization activities to support the AID IRA included drilling five boreholes ten feet deep with continuous sample collection. Samples were composited over two-foot intervals in each borehole and analyzed for metals, inorganic anions, and nitroaromatics. Also, certain locations were analyzed for pesticides, PCBs, and semi-volatiles. The boreholes were sealed by grouting with a cement-bentonite grout. The boreholes were located in potential borrow areas and at the former locations of Weldon Spring Ordnance Works (WSOW) buildings and wastewater lines.

1.5 SOUTHEAST ISOLATION DIKE

The third IRA requiring additional characterization is the Southeast Drainage Isolation Dike (SID). The scope of this IRA is similar to the AID IRA. No known structures or process lines from the WSOW were in this area.

Characterization requirements and activities for this IRA were also very similar, with five boreholes drilled. Samples were collected continuously and were analyzed for the same chemical parameters as other IRA locations.

1.6 ADMINISTRATION BUILDING AREA

Four proposed sites for the Administration Building (ABA) were investigated to ensure the selection of an uncontaminated area for this building (Figure 2).

The chemical characterization activity for this area consisted of drilling 13 boreholes with continuous sample collection. The boreholes varied in depth from 10 ft to 16 feet, which exceeds the excavation depth for building construction. At each borehole location, the samples collected were composited over two-foot intervals. These samples were analyzed for the same parameters as the other IRAs.

One of the boreholes was located at the site of a WSOW Toluene Storage Area. Samples from this borehole were analyzed for volatile and semi-volatile compounds in addition to the other parameters.

1.7 CONSTRUCTION STAGING AREA

The Construction Staging Area (CSA) covers approximately one acre at the southwest corner of the WSCP/WSRP. This area was a candidate site for construction support facilities including

decontamination facilities for vehicles and personnel, a subcontractor trailer area, a guard shelter, and a control point for access to the controlled area.

The chemical characterization activities for this area consisted of drilling two boreholes to a depth of 15 feet. Two composite samples from each location were collected. The samples from the 0-ft to 7-ft interval were analyzed for metals, inorganic anions (nitrate, sulfate, chloride, and fluoride), nitroaromatic compounds, semi-volatiles, volatiles, PCB's and pesticides. The 8-ft to 15-ft interval samples were analyzed for inorganic anions only.

2 SAMPLING AND ANALYSES

2.1 SAMPLE COLLECTION

A total of 150 samples were collected from 30 sample locations using a truck-mounted Central Mine Equipment 55 (CME) drill rig employing a 6 5/8 inch 0.D. hollow stem auger for drilling and the CME continuous sampler system. All samples, except those located in the Construction Staging Area, were composited over two-foot intervals to optimize analytical costs and achieve representative samples.

2.2 EQUIPMENT DECONTAMINATION

Soil sampling equipment was cleaned using a decontamination procedure designed to protect against cross contamination by nitroaromatic compounds and other chemical species. All augers, drill rods, and continuous samplers were washed using a high-pressure hot water washer. Augers and drill rods were cleaned between boreholes while continuous samplers were decontaminated between samples.

After washing, the continuous samplers were allowed to air dry. Then they were rinsed with toluene, followed by rinsing with acetone and hexane. The toluene rinse was used to dissolve any nitroaromatic residues. Acetone and hexane rinses were employed to remove toluene and other contaminants not removed by the hot water wash. The continuous samplers were allowed to air dry again prior to being reassembled. All rinsing solvents were collected. Stainless steel spatulas and pans were washed with distilled water, then rinsed with the same solvent sequence as used on the continuous samplers. This procedure was performed between every sample.

Field personnel wore new disposable vinyl gloves when collecting soil samples. Gloves were changed after decontaminating sampling equipment.

2.3 SAMPLE HANDLING AND PRESERVATION

The filled continuous samplers were opened in a shaded area to prevent photolysis of nitroaromatic compounds. Samples were collected from the continuous core using decontaminated stainless steel spatulas and pans. No chemical preservation was required during sample collection. The collected samples were placed in a cooler with blue ice. All samples were chilled immediately following sample collection and kept chilled throughout sample collection and shipment. All field samples were sent to the analytical laboratory in accordance with WSSRAP chain-of-custody standard operating procedures.

2.4 SAMPLE ANALYSES

Sample analyses were performed according to applicable EPA CLP protocols for metals, organics, pesticides, and PCBs. EPA method 300.0 was used for nitrate, sulfate, chloride, and fluoride analyses. EPA method 106.1 was used for pH analyses. Nitroaromatic compound analyses were performed following USATHAMA - HPLC methodology. Analytical parameters were selected on the basis of known or suspected contaminants from WSOW and/or WSUFMP processes. Samples were analyzed by metaTRACE, Inc. of Earth City, Missouri.

2.5 SAMPLE DESCRIPTION

A soil description for each sample was recorded in the field during sample collection. The soil samples from the Material Staging Area consisted primarily of gray-brown mottled clay. The Ash Pond Isolation Dike area soil was mostly rusty-red cherty clay. The Southeast Isolation Dike soil was

more varied with gray brown mottled clay, orange-gray mottled clay with sandy layers, buff dense gray silty clay, and orange-gray mottled clay with chert. The soil in the Administration Building Area consisted mostly of brown-gray mottled clay with some red-gray mottled clay. The soil in the Construction Staging Area was mostly brown-gray mottled clay with small amounts of red-gray mottled clay.

The soil sample descriptions in Appendix A address each sample interval in detail. These soils are typical of WSCP/WSRP soils which consist of the following units: Ferrelview Formation, clay till and basal till. A more detailed description of WSCP/WSRP soils is provided in the chemical soil investigation sampling plan (MK-F, 1988a).

3 DATA SUMMARY

This section presents a summary of the results of the chemical soil analyses. The detailed results of the inorganic and metals analyses are presented in Appendix B. Only those volatile, semi-volatile, PCB, and pesticide results which were above the detection limits are discussed in the following subsections. The detection limits achieved during these analyses are presented in Appendix C. These detection limits are in agreement with those required in the EPA Contract Laboratory Program (CLP).

As part of the Phase I chemical soils investigation (MK-F, 1988b), background metal concentrations across the WSS were analyzed. The results of this analysis are reproduced in Table 2. These background ranges should be considered when interpreting the concentration levels in samples taken from the five IRA and construction areas discussed in this report.

Aluminum, calcium, and magnesium are common in the clay soils present at the WSCP/WSRP. Clay particles are composed primarily of aluminum, calcium, and magnesium silicates with iron, potassium, and sodium ions readily interchangeable into the particle structure. In addition, elevated manganese levels are attributable to the presence of pyrolusite (MnO₂) in the soil.

Completion of this soil characterization program provided a large data set of inorganic anion results. The inorganic anion concentrations from this investigation and from the Phase I chemical soil characterization (MK-F, 1988b) were evaluated statistically to determine average background concentrations and ranges. Frequency histograms were plotted for each inorganic anion. These histograms were evaluated to detect concentrations outside the normal background distribution of inorganic anions. Elevated concentrations were removed from the data set prior to

TABLE 2

Statistical Data for Background Metal
Concentrations in Soils at the MSCP/MSRP

Compound	Sample	Arithmetic	Geometric	Arithmetic Standard		ackground nges	
=======================================	Size	Mean mg/Kg	Mean mg/Kg	Deviation mg/Kg	Low mg/Kg	High mg/Kg	
A1	142	12,536	11,350	4,902	1250	27,700	
Sb	98	29	25	8	2	40	
As	114	6	6	4	2	15	
Ва	140	161	145	70	25	390	
Be	129	1	1	1	< DL	6	
Cd	125	3	3	1	< DL	7	
Ca	114	3,495	3,044	1,839	190	9,300	
Cr	144	24	23	, 6	2	42	
Со	144	16	14	7	6	40	
Cu	143	15	14	6	3	34	
Fe	139	18,636	17,914	5,306	8,500	35,400	
Pb	127	29	25	16	7	84	
Li	92	10	9	3	< DL	17	
Mg	133	2,437	2,256	956	417	5,900	
Mn	127	495	370	334	49	1,400	
Hg	Background less	than the detect	ion limit of	0.1 mg/Kg			
Ni	138	19	18	7	7	43	
K	145	757	698	311	255	1,701	
Se	Background less	than the detect	ion limit of	0.5 mg/Kg			
Ag	96	3	2	2	1	13	
Na	136	486	437	202	4 9	982	
Tl	Background less	than the detect	ion limit of	1.0 mg/Kg			
V	141	35	34	7	6	54	
Zn	141	4 5	39	29	6	220	

< DL - Less than detection limit

Source: MK-F, 1988b

calculating the arithmetic mean, arithmetic standard deviation, and the geometric mean. This statistical information is presented in Table 3. These background ranges were used to evaluate the data from this investigation.

3.1 MATERIAL STAGING AREA

Analyses of the samples from the Material Staging Area detected no significant concentrations of nitrate, fluoride, sulfate, chloride, or nitroaromatic compounds. However, several organic compounds were detected. Appendix B presents the results of analyses for metals and inorganic anions in the Material Staging Area samples. Table 4 summarizes the significant organic data.

Twenty-eight samples were taken from five boreholes. Phthalates were identified in 12 samples. Phthalates are usually a result of laboratory contamination. The most common source is from the leaching of sample containers and laboratory tubing. However, dimethyl phthalate and di-n-butylphthalate are constituents of explosive propellants used in fuel matrices of double base rocket propellants, and they have also been used as insecticide propellant.

Phthalates were identified in samples taken from all five areas and were not detected in any of the field blanks. Therefore, they could be widespread in the area soils at a level of about one part per million. The final determination of the effects of phthalates in WSCP/WSRP soils will be made in the overall soil characterization program.

Aldrin, a pesticide, was found in two samples from the MSA. In sample SO-51137, 101068, Aldrin was found in the 0-ft to 2-ft, 2-ft to 4-ft, 4-ft to 6-ft, and 10-ft to 12-ft samples in concentrations ranging from 20 ug/kg to 1,600 ug/kg. In sample

TABLE 3

STATISTICAL DATA FOR
BACKGROUND INORGANIC ANION CONCENTRATIONS
IN SOILS AT THE WSCP/WSRP

				ARITHMETIC	ONSITE BA Ran	CKGROUND IGES
COMPOUND	SAMPLE SIZE	ARITHMETIC MEAN mg/Kg	GEOMETRIC MEAN mg/Kg	STANDARD DEVIATION mg/Kg	LOW mg/Kg	HIGH mg/Kg
Nitrate	250	2.5	1.09	2.0	0.5	10.0
Sulfate	247	33.0	23.00	27.0	1.0	110.0
Chloride	228	4.4	3.60	2.6	0.5	14.0
Fluoride	250	7.7	6.30	4.3	1.0	18.0

TABLE 4
MATERIAL STAGING AREA DATA SUMMARY

Organics Phthalates found in 12 samples

Chemical	Concentration	Interval	Sample Location	NO.
Aldrin 1	240 ug/kg 70 ug/kg ,600 ug/kg 20 ug/kg 18 ug/kg	(0-2') (2-4') (4-6') (10-12') (8-10')	SO-51137, 101068 SO-51137, 101068 SO-51137, 101068 SO-51137, 101068 SO-51500, 101190	2 2 2 2 2 2

SO-51500, 101190, Aldrin was found in the 8-ft to 10-ft sample at 18 ug/kg.

Aldrin is a chlorinated organic contact/fumigant insecticide. It was used to control soil insects in the 1950s and 1960s. Typically, aldrin undergoes biodegradation by oxidation to dieldrin with 75% to 100% disappearance from soils in one to six years. Dieldrin also degrades with 75% to 100% disappearance from soils in three to 25 years.

Given this biodegradation, the low concentrations detected during this investigation should not prohibit these IRA activities. The final effect of low aldrin concentrations will be evaluated in the Phase II chemical soil characterization program.

In summary, no chemical soil contamination was detected in the MSA which would effect performance of this IRA.

3.2 ASH POND ISOLATION DIKE

The Ash Pond Isolation Dike (AID) data summary (Table 5) presents the results of the analysis for detected organics, PCBs, pesticides, and nitroaromatic compounds. No elevated metal or inorganic anion concentrations were observed in AID soils.

Twenty-three samples were taken from five boreholes. The organic test results indicated phthalates in ten samples. Aroclor, a PCB, was identified in two samples at 270 ug/kg. One sample contained 1.04 ug/g of 2,4 DNT. These concentrations are well below cleanup criteria established at similar sites for the same compounds.

Most of the remaining organic compounds in Table 5 are associated with coal tar, gasoline, motor oil, and wood

TABLE 5

ASH POND DIKE DATA SUMMARY

Organics

Phthalates found in 10 samples.

2,4 DNT - 1.04 ug/g

Aroclor - 270 ug/kg

The following organics were identified in sample SO-51100, $100335\ (8-10')$:

Concentration

^{*} Below U.S. EPA-CLP contract required detection limits

preservatives and have been previously identified in the Ash Pond area (MK-F, 1988b). The compounds 2,4,6 trichlorophenol and 2,4,5 trichlorophenol are used widely in pesticides, fungicides, and bactericides. Hexachlorobutadiene is used as a solvent for synthetic rubber, heat transfer fluids, and washing fluids for removing hydrocarbons.

All of these compounds, with the exception of diethylphthalate, were detected below the U.S. EPA Contract Laboratory Program contract-required detection limits. These contract-required detection limits are established to detect concentrations of environmental concern. Detected concentrations below these limits should not be of concern from an environmental regulation standpoint. Appendix B presents metals and inorganic anion data for the AID samples.

The proposed IRA will not be affected by the chemical contaminants present in this area. No increase in chemical concentrations via surface discharge is expected as a result of impounding or diverting water around Ash Pond.

3.3 SOUTHEAST ISOLATION DIKE

Data for the Southeast Isolation Dike (SID) area are summarized in Table 6. These data represent 22 samples taken from five boring locations. No elevated concentrations of metals, inorganic anions, or nitroaromatic compounds were detected in the SID area. Organic analyses indicated phthalates present in six samples. Aroclor 1248, a PCB, was detected in one sample (SO-50160, 98735) in the 0-ft to 2-ft interval at 468 ug/kg. In the same sample, fluoranthene and pyrene were detected in the 2-ft to 4-ft interval, pyrene in the 4 ft to 6 ft interval, and phenol and 2-chlorophenol in the 8-ft to 10-ft interval. These compounds are associated with coal-tar by-products. Appendix B presents metal and inorganic anion data for the Southeast Isolation Dike samples.

TABLE 6 SOUTHEAST ISOLATION DIKE DATA SUMMARY

Organics

Phthalates found in six samples.

Concentration

Aroclor 1248 - 1.04 ug/g
Fluoranthene - 270 ug/kg *
Phenol - 14 ug/kg *
2-Chlorophenol - 11 ug/kg *
Pyrene - 110 ug/kg *
56 ug/kg *

^{*} Below U.S. EPA CLP contract required detection limit.

TABLE 7 ADMINISTRATION BUILDING AREA DATA SUMMARY

<u>Organics</u>

Phthalates were found in 24 samples.

CONCENTRATION	SAMPLE LOCATION	DEPTH
- 53 ug/kg* 59 ug/kg* 47 ug/kg* 17 ug/kg 10 ug/kg 18 ug/kg	49101, 100500 49101, 100500 49101, 100500	4-6' 4-6' 4-6'
12 ug/kg 1.4 ug/g		
	- 53 ug/kg* 59 ug/kg* 47 ug/kg* 17 ug/kg 10 ug/kg 18 ug/kg 12 ug/kg	- 53 ug/kg* 49101, 100500 59 ug/kg* 49101, 100500 47 ug/kg* 49101, 100500 17 ug/kg 10 ug/kg 18 ug/kg 12 ug/kg

<u>Nitrates</u>

High nitrate levels were found in sample SO-49101,100500.

CONCENTRATION	<u>DEPTH</u>
141 ug/g 1,285 ug/g 1,354 ug/g 1,297 ug/g 1,202 ug/g	(2-4') (4-6') (6-8') (8-10') (10-12')
1,108 ug/g	(12-14')

Sulfate - SO-49250 - 100140

CONCENTRATION	DEPTH
1,548 ug/gl	(2-4')

No chemical contamination which would impact the performance of this IRA was detected.

3.4 ADMINISTRATION BUILDING AREA

The Administration Building Area (ABA) data are summarized in Table 7. This summary represents 74 samples from 13 boring locations collected during this investigation. Samples were collected from four general locations in this area during the Phase I chemical soil sampling program (MK-F, 1988a). Several boreholes were located to confirm the past findings of elevated nitrate levels at depth in the original proposed Administration Building location. These findings were made during Phase I chemical soils characterization sampling in early 1987 (MK-F, 1988b). It was determined that the drainage from one of the major process buildings flowed under this location before the area was regraded to its current topography. Additional sample locations were also selected to evaluate other potential building locations. All ABA sampling locations and proposed building locations are presented in Figure 2.

Location SO-49101, 100500, was sampled to confirm previous detection of nitrates. These data support the previous findings of elevated nitrate levels. Elevated nitrate concentrations were detected in all intervals from 2-ft to 14-ft. The source of this contamination is a drainage ditch from WSOW Building 1-T-9 (trinitration house) which was revealed during aerial photography analysis and interpretation.

N-nitrosodiphenylamine, fluoranthene, and pyrene were also identified in the 4-ft to 6-ft sample. Chloroethane was detected in one sample at 12 ug/kg and 2,4,6 TNT was detected in one sample at 1.4 ug/g. Sulfate was detected in one sample (SO-49250 -100140) at an elevated concentration of 1,548 ug/g. Methylene chloride, a probable laboratory contaminant, was

detected in three samples. Appendix B presents data on metal and inorganic anions for the Administration Building samples.

All other IRA activities discussed in this report were designed in support of remedial action and were temporary in nature. The Administration Building was a potentially permanent structure which was to be constructed in an uncontaminated area unaffected by remedial actions. For this reason, additional data were collected and presented, and further interpretations were made.

Previous investigations of WSOW contamination indicated that several process and support areas were most likely contaminated with nitroaromatic compounds. These areas include the wash house, settling tanks, wooden wastewater lines, burn areas, and wastewater lagoons. Chemical contamination from other sources was possible, but was probably less severe with respect to size and concentration than the areas mentioned above.

The siting of the ABA was evaluated using this information. None of the buildings or areas involved in the final production phases or purification process of TNT are located in the vicinity of the ABA. The closest area of concern is more than 700 ft north of the building site and is in a different drainage basin from the ABA site. All WSOW features, proposed building locations, and sampling locations are shown in Figure 3.

The closest two WSOW buildings to the ABA were Buildings 1-T-8 (Acid Recovery) and 1-T-7 (Mono-Nitration). No wastewater was generated in these process buildings. Aerial photography analysis and interpretation of 1945 imagery indicated that there were no drainage features from these process buildings through the ABA. This confirmed that wastewater was not generated.

The extensive decontamination efforts performed in 1954, prior to the transfer of WSOW land to the AEC, are documented (MK-F, 1988a) and appear to have been thorough. This interpretation was supported by the absence of elevated concentrations of nitroaromatic compounds in potential source areas as documented in this investigation and the Phase I chemical soil data report (MK-F, 1988b). It may be concluded that the contamination, if present, was removed in 1954.

The ABA area was used for personal vehicle parking for WSUFMP personnel. All contaminants from the process and support facilities drained away from this area. Therefore, no contamination from WSUFMP sources was expected. In addition, any chemical contamination from WSUFMP processes would likely be accompanied by elevated radioactivity levels. Field surveys and soil sample analysis have documented that radioactivity levels are not elevated in this area.

The available data indicate that chemical soil contamination is not present in the ABA and that a permanent facility could be sited at the proposed location.

3.5 CONSTRUCTION STAGING AREA

The Construction Staging Area (CSA) data indicated no chemical soil contamination from four samples taken at the two boring locations. The concentrations of all detected metals were within the background ranges for the Weldon Spring Site. The organic analysis indicated phthalates and methylene chloride present in two samples taken from the 0-ft to 7-ft interval. Both of these organic compounds are probable laboratory contaminants. No significant concentrations of nitroaromatic compounds, nitrate, sulfate, chloride, or fluoride were found.

Chemical soil contamination was not found in the area proposed to be used as a Construction Staging Area.

4 DATA QUALITY ANALYSIS

Analytical quality control procedures were performed according to EPA Contract Laboratory Program (CLP) criteria where applicable. The following summary addresses analytical conformance for GC/MS, GC/HPLC, and inorganic measures. Reference should be made to the CLP quality control requirements for specific control limits. Additional QC information on percent recoveries and duplicate analyses is presented in Appendix D.

GC/MS

The GC/MS analysis conformance summary indicated no blank contamination detected in the B/N or A/E fractions. Methylene chloride was detected in the blank VOA fraction at 2.5 ug/l. Surrogate recoveries were within required limits for the VOA fraction. Fifteen samples were not within the acceptable recovery range for the B/N, A/E fractions. All samples were analyzed within the specified holding time.

GC-(EPA/CLP)/HPLC (USATHAMA)

GC/HPLC conformance summary indicated no contaminants were detected in any of the blank samples. All samples were analyzed within specified holding times.

Metals/Inorganics

The metal/inorganic conformance summary indicated no contaminants were detected in any blank samples. All analyses were performed within specified holding times.

In summary, the data presented in this report is valid and of sufficient quality to be used in this and future assessments.

5 CONCLUSIONS

This soil sampling effort for selected interim response actions provides sufficient data of acceptable quality to support the design of the IRAs. The data from samples collected at depth from each of the five areas provide chemical characterization information pertinent to evaluating the environmental impact of the interim response action.

The data and interpretations presented in this report confirm those of previous investigations indicating limited chemical soil contamination on the WSCP/WSRP. No chemical contamination which would significantly affect the five IRAs discussed in this report was discovered.

This investigation also supported previous conclusions regarding the absence of significant nitroaromatic soil contamination.

The data presented in this report will also be used in support of the overall soil characterization as detailed in the soil sampling plan (MK-F, 1988a).

6 REFERENCES

- Karelverschueren Agr University of Wageningen, Netherlands, 1983. Handbook of Environmental Data on Organic Chemicals, 2nd Edition, Van Nostrand Reinhold Co.
- MK-F, 1987. Phase I Water Quality Assessment Report, DOE/OR/21548-003, December.
- MK-F, 1988a. Chemical Soil Investigation Sampling Plan for the Weldon Spring Chemical Plant/Raffinate Pits, DOE/OR/21548-013, May.
- MK-F, 1988b. Phase I Chemical Soil Investigation Data Report for the Weldon Spring Chemical Plant/Raffinate Pits, DOE/OR/21548-016, June.
- U.S. Department of Agriculture, 1982. Soil Survey of St. Charles County, Missouri, Soil Conservation Service, May.

APPENDIX A SOIL SAMPLE DESCRIPTION

SOIL SAMPLE DESCRIPTION

MATERIAL STAGING AREA

Sample Number:	SO-51150,	101207
----------------	-----------	--------

Location: Material Staging Area

Analysis Performed: Metals, inorganics, nitroaromatics, pH, %

moisture

Sample Description:

0 to 2'	6 inches of topsoil, 1.5 feet of gray-brown mottled clay
2 to 4'	2 feet gray-brown mottled clay
4 to 6'	2 feet gray-brown mottled clay
6 to 8'	6 inches gray-brown mottled clay, 1.5 feet
	brown clay moist
8 to 10'	2 feet wet brown clay

Sample Number: SO-51137,101068

Location: Material Staging Area

Analysis Performed: Metals, inorganics, nitroaromatics,

semi-volatiles, PCBs, pesticides, pH, %

moisture

Sample Description:

_		_ •	
0	to	2'	8 inches topsoil, 16 inches red-brown clay
2	to	4'	2 feet gray-brown mottled clay
4	to	6 '	2 feet gray-brown mottled clay
6	to	8'	6 inches brown clay with black chunks; 18 inches moist brown clay
8	to	10'	6 inches brown clay; 18 inches gray-brown mottled clay
10	to	12'	2 feet gray-brown mottled clay

Sample Description: SO-51500,101190

Location: Material Staging Area

Analysis Performed: Metals, inorganics, nitroaromatics,

semi-volatiles, PCBs, pesticides, pH, %

moisture

0 to 2'	l foot top soil, l foot red-brown clay
2 to 4'	2 feet dry gray-brown mottled clay
4 to 6'	2 feet dry gray-brown mottled clay
6 to 8'	1 foot dry gray-brown mottled clay, 1 foot
	same but moister with black oxide
8 to 10'	2 feet buff-brown mottled, moist
10 to 12'	18 inches buff-brown mottled, moist; 6 inches
	brown-black mottled moist

Sample Number: S0-51445,101065

Location: Material Staging Area

Analysis Performed: Metals, inorganics, nitroaromatics, pH, %

moisture

Sample Description:

0 t	o 2'	8 inches topsoil, 16 inches brown-gray clay
2 t	o 4'	18 inches brown-gray clay, 6 inches dense
		gray-brown mottled clay
4 t	o 6'	2 feet gray-brown mottled clay, dry
6 t	o 8'	2 feet gray-brown mottled clay, dry
8 t	o 10'	2 feet gray-brown mottled clay, dry
10 t	o 12'	18 inches gray-brown mottled clay, 6 inches
		brown clay with black specks, possibly oxide

Sample Number: S0-51360,101175

Location: Material Staging Area

Analysis Performed: Metal, inorganics, nitroaromatics, pH, %

moisture.

0 to 2'	4 inches road rocks, 10 inches brick red
	clay, 10 inches brown-buff clay
2 to 4'	2 feet dry gray-brown clay
4 to 6'	2 feet dry brown-gray clay
6 to 8'	2 feet brown-gray clay
8 to 10'	2 feet brown-gray clay, gummy

ASH POND DIKE

Sample Number: S0-51180,100335
Location: Ash Pond Dike
Analysis Performed: Metals, inorganics, nitroaromatics

Sample Description:

0 to 2'
4 inches of topsoil, 20 inches buff dense but
friable clay - glass beads (volcanic)
2 to 4'
20 inches buff clay with more rust color
increasing with depth, 4 inches

Sample Number: SO-51125,100260 Location: Ash Pond Dike

Analysis Performed: Metals, inorganics, nitroaromatics

Sample Description:

1 foot topsoil, 1 foot buff to orange loose,
dry clay
2 to 4' 8 inches orange dry clay, 8 inches cherty dry
clay, 8 inches rusty cherty clay
4 to 6' 2 feet red-rusty, cherty clay
6 to 8' 2 feet red-rusty, cherty clay

8 to 10' 1 foot red-rusty, cherty clay, 1 foot

buff-brown, moist clay

Sample Number: SO-51150,100220 Location: Ash Pond Dike

Analysis Performed: Metals, inorganics, nitroaromatics,

semi-volatiles, PCBs, pesticides

Sample Description:

0 to 2'
2 inches topsoil, 16 inches brown-gray clay,
6 inches brown dry topsoil with chert
towards bottom
2 to 4'
2 inches brown topsoil cherts, 22 inches
rusty-red clay with 80% chert
4 to 6'
5 feet rusty red clay 80% chert
6 to 8'
7 to 10'
8 to 10'
9 inches rusty red clay 80% chert
10 inches rusty red clay 80% chert
11 inches
12 inches

Sample Number: SO-51100,100335 Location: Ash Pond Dike

Analysis Performed: Metals, inorganics, nitroaromatics,

semi-volatiles, PCBs, pesticides

Sample Description:

0 to 2'	6 inches topsoil - 18 inches gray-brown clay
2 to 4'	2 feet buff friable clay, rust color increases with depth
4 to 6'	<pre>2 feet of dense, moist, gray-rust mottled clay, friable at top 6 inches with black specks</pre>
6 to 8'	1 foot dense, moist, gray-rust mottled clay, 1 foot chert chunks with clay, chert 80%, clay 20%
8 to 10'	2 feet rusty clay with chert (20%)

Sample Number: SO-51308,100085 Location: Ash Pond Dike

Analysis Performed: Metals, inorganics, nitroaromatics

0 to 2'	1 foot topsoil, organics layer, more topsoil (6 inches), dense gray clay - 6 inches
2 to 4'	l foot dense gray clay, 6 inches gray clay with Fe oxide stains, 1 inch dry cherty clay with Fe oxide
4 to 6'	<pre>1 foot gray with Fe oxide stain increasing with depth to gray/brown mottled in second foot</pre>
6 to 8' 8 to 10'	2 feet gray-rust moist dense clay 2 feet gray-rust moist dense clay

SOUTHEAST ISOLATION DIKE

SUUTHEAST ISULATION	DIKE
Sample Number: Location: Analysis Performed: Sample Description:	SO-50290,98700 SE Isolation Dike Metals, inorganics, nitroaromatics
0 to 2'	10 inches topsoil, 10 inches gray-brown moist mottled dense clay, 4 inches clay with cherts 50%, friable
2 to 4'	14 inches brown clay with chert, 10 inches brown clay dense and friable
4 to 6' 6 to 8'	2 feet brown-gray mottled clay, moist & dense 1 foot gray-brown mottled clay, 6 inches dark gray dense clay, 6 inches same with chert
Sample Number: Location: Analysis Performed: Sample Description:	SO-50140,98820 SE Isolation Dike Metals, inorganics nitroaromatics
0 to 2'	4 inches topsoil, 6 inches chert, 6 inches buff moist clay with 50% chert, 8 inches clay without chert
2 to 4'	20 inches orange-gray mottled, moist clay, 4 inches same but siltier
4 to 6'	2 feet orange-gray mottled moist clay with minor sandy layers
6 to 8'	2 feet orange-gray mottled clay, moist with black specks toward bottom 1 foot
Sample Number: Location: Analysis Performed: Sample Description:	SO-50230,98991 SE Isolation Dike Metals, inorganics nitroaromatics
0 to 2'	8 inches of topsoil, 16 inches brown-rust mottled clay
2 to 4'	1 foot buff, dense clay, 1 foot buff silty clay, friable
4 to 6' 6 to 8'	<pre>2 feet buff-gray silty clay 8 inches buff-gray silty clay, 16 inches buff-gray mottled dense clay</pre>

Sample Number: SO-50160,98735 Location: SE Isolation Dike

Analysis Performed: Metals, inorganics, nitroaromatics, semi-volatiles, PCBs, pesticides

Sample Description:

0 to 2'
2 to 4'
2 feet dry gray clayey silt
4 to 6'
6 to 8'
8 inches topsoil, 16 inches gray silty clay
2 feet dry gray clayey silt
6 to 8'
9 feet gray silty clay - darker at top
8 to 10'
9 8 inches light gray loose clay, 4 inches
9 dense, moist clay, 12 inches dense orange9 gray mottled clay with chert
10 to 12'
2 feet orange-gray mottled clay

Sample Number: S0-50252,98800 Location: SE Isolation Dike

Analysis Performed: Metals, inorganics, nitroaromatics

0 to 2'	4 inches topsoil, 14 inches buff, moist, dense clay, 6 inches buff-gray silty clay, friable
2 to 4'	22 inches buff-gray silty clay, 2 inches of light gray silt
4 to 6'	<pre>16 inches brick red-gray mottled clay, inches buff-gray mottled clay</pre>
6 to 8'	<pre>1 foot buff-gray mottled clay, 6 inches buff- gray mottled with black specks, 6 inches without</pre>

ADMINISTRATION BUILDING

Sample Number: SO-49475,99983 Administration Building Location: Analysis Performed: Metals, inorganics, nitroaromatics Sample Description: 0 to 2' 6 inches topsoil, 18 inches brown dry clay 2 to 4' 2 feet dense brown clay with small rocks 4 to 6' 8 inches brown clay, 16 inches moist soft gray clay 2 feet gray moist clay 6 to 8' 2 feet gray-brown mottled clay 8 to 10' 10 to 12' 2 feet gray-brown mottled clay so-49000,100180 Sample Number: Location: Administration Building Analysis Performed: Metals, inorganics, nitroaromatics Sample Description: 0 to 2' 6 inches of rock fill, 18 inches moist brown clay 2 to 4' 2 feet moist brown clay 4 to 6' 2 feet moist brown-gray clay 6 to 8' 2 feet most gray-brown clay Sample Number: SO-49000,99985 Administration Building Location: Metals, inorganics, nitroaromatics, Analysis Performed: volatiles, semi-volatiles Sample Description: 0 to 2' 2 inches topsoil, 6 inches soil with rock fill, 8 inches dry buff clay, 8 inches moist dense buff clay 2 feet gray-brown mottled clay, moist & dense 2 to 4' 4 to 6' 2 feet gray-brown mottled clay 6 to 8' 2 feet gray-brown mottled clay Sample Number: SO-49000, 100295 Location: Administration Building Analysis Performed Metals, inorganics, nitroaromatics Sample Description: 0 to 2' 4 inches topsoil, 8 inches buff, dry, clay, 12 inches buff-brown mottled, hard clay 2 to 4' 2 feet buff-brown mottled clay - top 8 inches hard, lower 16 inches softer 4 to 6' 2 feet brown-gray mottled clay, moist 6 to 8' 2 feet brown-gray mottled clay, moist

Sample Number: SO-49172,100180 Administration Building Location: Metals, inorganics, nitroaromatics Analysis Performed: Sample Description: 6 inches topsoil, 18 inches brown clay-denser 0 to 2' and more red towards bottom 2 to 4' 1 foot brown clay, dense, 1 foot brown-gray mottled clay 2 feet gray-brown clay, with some silty clay 4 to 6' layers 2 feet gray-brown clay, dense 6 to 8' so-49250,100140 Sample Number: Administration Building Location: Metals, inorganics, nitroaromatics Analysis Performed: Sample Description: 6 inches topsoil, 18 inches brown silty clay 0 to 2' 2 feet of brown clay with silty layer (1/2"2 to 4' thick) at 10 inches down 2 feet brown-gray mottled clay 4 to 6' 6 to 8' 2 feet brown-gray mottled clay - dense 2 feet brown-gray mottled dense clay 8 to 10' so-49000,100500 Sample Number: Administration Building Location: Metals, inorganics, nitroaromatics Analysis Performed: Sample Description: 4 inches topsoil, 20 inches buff dry clay 0 to 2' 2 feet brown-buff, dry clay 1 foot brown-buff, dry clay, 1 foot moist 2 to 4' 4 to 6' dense, brown clay 6 to 8' 2 feet sticky moist brown-gray mottled clay 2 feet sticky moist brown-gray mottled clay 8 to 10' 2 feet moist brown-gray clay 10 to 12' SO-49080, 100295 Sample Number: Administration Building Location: Metals, inorganics, nitroaromatics Analysis Performed: Sample Description: 4 inches topsoil, 8 inches soft moist, brown 0 to 2' clay, 12 inches hard, dense, brown clay 1 foot hard brown clay, 1 foot hard brown-2 to 4' gray mottled clay 4 to 6' 2 feet brown-gray mottled clay 2 feet brown-gray mottled clay 6 to 8' 2 feet brown-gray mottled clay - softer at 8 to 10' bottom 1 foot

Sample Number: S0-49082,100570

Location: Administration Building

Analysis Performed: Metals, inorganics, nitroaromatics, semi-volatiles, PCBs, pesticides

Sample Description:

0	to	2'	6	inche	es topsoil, 18 inches dry, buff clay
2	to	4'	2	feet	dry, brown clay
4	to	6'	1	foot	dry brown clay, 1 foot moist brown
			(clay	
6	to	8'			red-brown clay - moist
8	to	10'	2	feet	brown-gray mottled clay - moist
10	to	12'	2	feet	brown-gray mottled clay
12	to	14'	2	feet	gray-brown mottled clay
14	to	16'	2	feet	gray-brown mottled clay

Sample Number: SO-49160,100500

Location: Administration Building

Analysis Performed: Metals, inorganics, nitroaromatics

Sample Description:

0 to 2'	4 inches topsoil, 4 inches rock fill, 1
	foot dry buff clay, 4 inches moist brown
	clay
2 to 4'	2 feet moist brown clay

2 to 4' 2 feet moist brown clay

4 to 6' 1 foot moist brown clay, 1 foot moist brown-gray clay

6 to 8' 2 feet moist brown-gray clay

8 to 10' 1 foot moist brown-gray clay, 1 foot moist brown clay

2 feet moist brown clay

Sample Number: S0-49000,100665

Location: Administration Building

Analysis Performed: Metals, inorganics, nitroaromatics

Sample Description:

10 to 12'

0	to	2'	6 inches topsoil, 8 inches moist clayey
			dirt, 10 inches dry brown clay
2	to	4'	2 feet dry brown clay
4	to	6'	2 feet dry brown clay
6	to	8'	1 foot dry brown clay, 1 foot moist,
			red-gray mottled clay
8	to	10'	2 feet moist red-gray mottled clay
10	to	12'	1 foot moist red-gray mottled clay, 1 foot
			moist brown clay

Sample Number: S0-49101,100500

Location: Administration Building

Analysis Performed: Metals, inorganics, nitroaromatics,

semi-volatiles, PCBs, pesticides

Sample Description:

Λ	to	21	/.	inche	e tone	oil 9	20 inches di	ew buff	claw
2	to	4'	2	feet	dry bi	rown cl	lay, harder	at botto	om
4	to	6'	2	feet	soft,	moist	brown clay		
6	to	8'	2	feet	soft,	moist	brown-gray	mottled	clay
8	to	10'	2	feet	soft,	moist	brown-gray	mottled	clay
10	to	12'	2	feet	soft,	moist	brown-gray	mottled	clay
12	to	14'	2	feet	soft,	moist	gray-brown	mottled	clay
14	to	16'	2	feet	soft,	moist	brown-gray	mottled	clay

Sample Number: SO-

SO-49132,100440

Location:

Administration Building

Analysis Performed: Metals, inorganics, nitroaromatics, semi-volatiles, PCBs, pesticides

0	to	2'	4	inche	es soi	i1, 20	inche	es brow	wn-	gray	clay,
			(dense							
2	to	4'	2	feet	hard	brown-	gray	clay			
4	to	6'	2	feet	hard	brown.	gray	clay,	mc	oist	
6	to	8 '	2	feet	hard	brown-	-gray	clay			
8	to	10'	2	feet	hard	brown-	gray	clay			
10	to	12'				brown-					
12	to	14'							1	foot	softer
				orown			0 ,	• ,			

CONSTRUCTION STAGING AREA

Sample Number: S0-50800,98150

Location: Construction Staging Area

Analysis Performed: Metals, inorganics, nitroaromatics,

volatiles, semi-volatiles, PCBs,

pesticides, pH, % moisture

Sample Description:

0 to 7' 12 inches topsoil, gray-brown mottled clay

8 to 15' gray-brown mottled clay

Sample Number: S0-50950,98300

Location: Construction Staging Area

Analysis Performed: Metals, inorganics, nitroaromatics,

volatiles, semi-volatiles, PCBs,

pesticides, pH, % moisture

Sample Description:

0 to 7' 6 inches topsoil, gray-brown mottled clay

8 to 15' gray-brown mottled clay

APPENDIX B
ANALYTICAL DATA - METALS, INORGANIC ANIONS

TABLE B-1

ADMINISTRATION BUILDING AREA IRA SOILS RESULTS - ANIONS

\$0-49000, \$100180-0, 2-1187	LOGRATION	DATE		CONCENTR	ATION (UG/	G)
\$0-49000, 100180-2, 4-1187	LOCATION		CHLORIDE	FLOURIDE	NITRATE	SULFATI
\$0-49000, 100180-4, 6-1187	SO-49000,100180-0,2-1187	11/11/87	1.07	12.44	2.68	91.62
\$0-49000,100180-4,6-1187	SO-49000,100180-2,4-1187	11/11/87	4.40	21.13	1.87	58.11
\$\text{SO-49000,100295-0,2-1187}\$ \$11/11/87\$ \$12.79 \$9.76 \$1.73\$ \$163.41		11/11/87	1.53	17.60	2.84	28.30
\$\text{SO-49000,100295-0,2-1187}\$ \$11/11/87\$ \$12.79\$ \$9.76\$ \$1.73\$ \$163.41 \text{SO-49000,100295-4,6-1187}\$ \$11/11/87\$ \$11/11/87\$ \$12.79\$ \$9.76\$ \$1.73\$ \$163.41 \text{SO-49000,100295-6,8-1187}\$ \$11/11/87\$ \$11.09\$ \$12.10\$ \$14.88\$ \$5.51\$ \$31.93\$ \$SO-49000,100500-0,2-1187\$ \$11/12/87\$ \$1.60\$ \$9.72\$ \$2.63\$ \$39.45\$ \$SO-49000,100500-10,12-1187\$ \$11/12/87\$ \$1.60\$ \$9.72\$ \$2.63\$ \$39.45\$ \$SO-49000,100500-10,12-1187\$ \$11/12/87\$ \$1.08\$ \$7.20\$ \$3.48\$ \$8.16\$ \$SO-49000,100500-4,6-1187\$ \$11/12/87\$ \$0.46\$ \$10.04\$ \$1.15\$ \$60.38\$ \$SO-49000,100500-4,6-1187\$ \$11/12/87\$ \$1.01\$ \$7.92\$ \$2.89\$ \$15.95\$ \$SO-49000,100500-6,8-1187\$ \$11/12/87\$ \$1.01\$ \$7.92\$ \$2.89\$ \$15.95\$ \$SO-49000,100500-8,10-1187\$ \$11/12/87\$ \$1.00\$ \$7.92\$ \$2.89\$ \$15.95\$ \$SO-49000,100500-8,10-1187\$ \$11/12/87\$ \$2.00\$ \$1.88\$ \$0.94\$ \$41.20\$ \$SO-49000,100665-0,2-1187\$ \$11/12/87\$ \$2.00\$ \$1.88\$ \$0.94\$ \$41.20\$ \$SO-49000,100665-10,12-1187\$ \$11/12/87\$ \$2.03\$ \$13.75\$ \$2.04\$ \$8.95\$ \$SO-49000,100665-4,4-1187\$ \$11/12/87\$ \$4.84\$ \$12.96\$ \$3.27\$ \$127.35\$ \$SO-49000,100665-6,8-1187\$ \$11/12/87\$ \$9.87\$ \$9.74\$ \$3.01\$ \$46.35\$ \$SO-49000,100665-6,8-1187\$ \$11/12/87\$ \$9.58\$ \$12.43\$ \$2.72\$ \$49.85\$ \$SO-49000,99985-0,2-1187\$ \$11/11/87\$ \$2.94\$ \$9.28\$ \$ND \$74.90\$ \$SO-49000,99985-4,6-1187\$ \$11/11/87\$ \$2.94\$ \$9.28\$ \$ND \$74.90\$ \$SO-49000,99985-2,4-1187\$ \$11/11/87\$ \$2.94\$ \$9.28\$ \$ND \$74.90\$ \$SO-49000,100295-2,4-1187\$ \$11/11/87\$ \$2.94\$ \$9.28\$ \$ND \$74.90\$ \$SO-49000,100295-2,4-1187\$ \$11/12/87\$ \$1.01\$ \$1.287\$ \$1.34\$ \$0.94\$ \$0.94\$ \$0.95\$ \$0.9988,100295-2,4-1187\$ \$11/12/87\$ \$1.26\$ \$1.81\$ \$2.90\$ \$2.40\$ \$1.11\$ \$1.11\$ \$1.15\$ \$2.40\$ \$3.55\$ \$3.59\$ \$3.59\$ \$3.59\$ \$3.59\$ \$3.59\$ \$3.59\$ \$3.59\$ \$3.59\$ \$3.59\$ \$3.59\$ \$3.59\$ \$3.59\$ \$3.60\$ \$3.70\$ \$3.80\$ \$3.70\$ \$3.80\$ \$3.80\$ \$3.90	· · · · · · · · · · · · · · · · · · ·	11/11/87	9.61	19.64	3.59	19.15
\$0-49000,100295-2,4-1187		11/11/87	1.93	9.66	4.52	33.57
\$0-49000,100295-4,6-1187		11/11/87	12.79	9.76	1.73	163.41
\$\text{SO-49000,} 100295-6, 8-1187 \text{11/11/87} \text{13.09} \text{14.88} \text{5.51} \text{31.91} \\ \$\text{SO-49000,} 100500-0, 2-1187 \text{11/12/87} \text{1.60} \text{9.72} \text{2.63} \text{39.45} \\ \$\text{SO-49000,} 100500-2, 4-1187 \text{11/12/87} \text{1.60} \text{9.72} \text{3.48} \text{8.16} \\ \$\text{SO-49000,} 100500-2, 4-1187 \text{11/12/87} \text{0.61} \text{5.99} \text{0.98} \text{37.33} \\ \$\text{SO-49000,} 100500-6, 8-1187 \text{11/12/87} \text{0.61} \text{5.99} \text{0.98} \text{3.33} \\ \$\text{SO-49000,} 100500-8, 10-1187 \text{11/12/87} \text{1.09} \text{7.88} \text{1.32} \\ \$\text{SO-49000,} 100665-0, 2-1187 \text{11/12/87} \text{2.00} \text{1.88} \text{0.94} \text{4.12} \\ \$\text{SO-49000,} 100665-0, 2-1187 \text{11/12/87} \text{5.35} \text{3.27} \text{2.33} \\ \$\text{SO-49000,} 100665-4, 6-1187 \text{11/12/87} \text{5.63} \text{5.65} \text{4.34} \\ \$\text{SO-49000,} 100665-6, 8-1187 \text{11/12/87} \qu		11/11/87	19.39	12.10	1.40	27.73
\$\text{SO-49000,} 100500-0, 2-1187 \text{11/12/87} \text{1.60} \text{9.72} \text{2.63} \text{3.48} \text{8.16} \\ \$\text{SO-49000,} 100500-10,12-1187 \text{11/12/87} \text{1.08} \text{7.20} \text{3.48} \text{8.16} \\ \$\text{SO-49000,} 100500-2, 4-1187 \text{11/12/87} \text{0.61} \text{5.99} \text{0.98} \text{3.73} \\ \$\text{SO-49000,} 100500-4, 6-1187 \text{11/12/87} \text{0.61} \text{5.99} \text{0.98} \text{3.73} \\ \$\text{SO-49000,} 100500-8, 10-1187 \text{11/12/87} \text{1.00} \text{7.92} \text{2.89} \text{1.21} \\ \$\text{SO-49000,} 100665-0, 2-1187 \text{11/12/87} \text{2.00} \text{1.88} \text{4.22} \\ \$\text{SO-49000,} 100665-0, 2-1187 \text{11/12/87} \text{5.35} \			13.09			31.91
\$\text{SO-49000,} 100500-10,12-1187 \text{11/12/87} \text{1.08} \text{7.20} \text{3.48} \text{8.16} \\ \$\text{SO-49000,} 100500-2,4-1187 \text{11/12/87} \text{0.46} \text{10.04} \text{1.15} \text{60.38} \\ \$\text{SO-49000,} 100500-4,6-1187 \text{11/12/87} \text{0.61} \text{5.99} \text{0.98} \text{37.38} \\ \$\text{SO-49000,} 100500-8, 10-1187 \text{11/12/87} \text{1.00} \text{7.88} \text{1.33} \\ \$\text{SO-49000,} 100665-0,2-1187 \text{11/12/87} \text{2.00} \text{1.88} \text{0.94} \text{41.20} \\ \$\text{SO-49000,} 100665-0,2-1187 \text{11/12/87} \text{5.35} \text{3.75} \text{2.96} \text{2.72} \			1.60	9.72		39.47
\$\text{SO-49000,100500-2,4-1187}\$ \$11/12/87\$ \$0.46\$ \$10.04\$ \$1.15\$ \$60.38\$ \$\text{SO-49000,100500-4,6-1187}\$ \$11/12/87\$ \$1.01\$ \$7.92\$ \$2.89\$ \$15.97\$ \$\text{SO-49000,100500-8,10-1187}\$ \$11/12/87\$ \$1.01\$ \$7.92\$ \$2.89\$ \$15.97\$ \$\text{SO-49000,100500-8,10-1187}\$ \$11/12/87\$ \$1.09\$ \$7.88\$ \$1.33\$ \$12.13\$ \$\text{SO-49000,100665-0,2-1187}\$ \$11/12/87\$ \$2.00\$ \$1.88\$ \$0.94\$ \$41.20\$ \$\text{SO-49000,100665-10,12-1187}\$ \$11/12/87\$ \$2.30\$ \$13.75\$ \$2.04\$ \$2.00\$ \$1.88\$ \$0.94\$ \$41.20\$ \$2.00\$ \$1.88\$ \$0.94\$ \$41.20\$ \$2.00\$ \$1.88\$ \$0.94\$ \$41.20\$ \$2.00\$ \$1.88\$ \$0.94\$ \$41.20\$ \$2.00\$ \$1.89\$ \$0.4900,100665-2,4-1187\$ \$11/12/87\$ \$2.53\$ \$13.75\$ \$2.04\$ \$3.27\$ \$2.00\$ \$1.89\$ \$3.27\$ \$2.127.33\$ \$3.20-49000,100665-2,4-1187\$ \$11/12/87\$ \$2.63\$ \$15.65\$ \$1.43\$ \$13.62\$ \$3.26\$ \$3.27\$ \$49.85\$ \$3.24900,100665-4,6-1187\$ \$11/12/87\$ \$9.87\$ \$9.74\$ \$3.01\$ \$46.33\$ \$50-49000,100665-8,10-1187\$ \$11/12/87\$ \$9.87\$ \$9.74\$ \$3.01\$ \$46.33\$ \$50-49000,99985-0,2-1187\$ \$11/11/87\$ \$2.94\$ \$9.28\$ \$10.772\$ \$2.74* \$2.94\$ \$9.28\$ \$10.772\$ \$2.74* \$2.94* \$9.28\$ \$10.772\$ \$2.74* \$2.94* \$9.28\$ \$10.772\$ \$2.74* \$2.94* \$9.28\$ \$10.772\$ \$2.74* \$2.94* \$9.28\$ \$10.772\$ \$2.74* \$1.11/187\$ \$2.94\$ \$9.28\$ \$10.772\$ \$2.74* \$2.94* \$9.28\$ \$10.772\$ \$2.74* \$2.95* \$2.94* \$3.272* \$49.85* \$2.94						8.16
\$\text{SO-49000,} 100500-4,6-1187 \text{11/12/87} \text{0.61} \text{5.99} \text{0.98} \text{37.38} \\ \$\text{SO-49000,} 100500-6,8-1187 \text{11/12/87} \text{1.01} \text{7.92} \text{2.89} \text{15.97} \\ \$\text{SO-49000,} 100565-0,2-1187 \text{11/12/87} \qua	-					60.38
\$\text{SO-49000,100500-6,8-1187}\$ \$11/12/87\$ \$1.01\$ \$7.92\$ \$2.89\$ \$15.97\$ \$\text{SO-49000,100500-8,10-1187}\$ \$11/12/87\$ \$1.09\$ \$7.88\$ \$1.33\$ \$12.15\$ \$\text{SO-49000,100665-0,2-1187}\$ \$11/12/87\$ \$2.00\$ \$1.88\$ \$0.94\$ \$41.20\$ \$\text{SO-49000,100665-10,12-1187}\$ \$11/12/87\$ \$5.35\$ \$13.75\$ \$2.04\$ \$8.95\$ \$\text{SO-49000,100665-2,4-1187}\$ \$11/12/87\$ \$2.63\$ \$15.65\$ \$1.43\$ \$136.20\$ \$\text{SO-49000,100665-6,8-1187}\$ \$11/12/87\$ \$9.87\$ \$9.74\$ \$3.01\$ \$46.35\$ \$\text{SO-49000,100665-8,10-1187}\$ \$11/12/87\$ \$9.58\$ \$12.43\$ \$2.72\$ \$49.85\$ \$\text{SO-49000,99985-0,2-1187}\$ \$11/11/87\$ \$2.94\$ \$9.28\$ \$ND \$74.95\$ \$\text{SO-49000,99985-2,4-1187}\$ \$11/11/87\$ \$2.94\$ \$9.28\$ \$ND \$74.95\$ \$\text{SO-49000,99985-2,4-1187}\$ \$11/11/87\$ \$2.94\$ \$9.28\$ \$ND \$74.95\$ \$\text{SO-49000,99985-6,8-1187}\$ \$11/11/87\$ \$2.574\$ \$8.80\$ \$7.72\$ \$327.45\$ \$\text{SO-49000,99985-6,8-1187}\$ \$11/11/87\$ \$2.54\$ \$8.80\$ \$7.72\$ \$327.45\$ \$\text{SO-49000,99985-6,8-1187}\$ \$11/11/87\$ \$3.34\$ \$6.08\$ \$2.62\$ \$26.22\$ \$\text{SO-49080,100295-0,2-1187}\$ \$11/12/87\$ \$3.34\$ \$6.08\$ \$2.62\$ \$26.22\$ \$\text{SO-49080,100295-2,4-1187}\$ \$11/12/87\$ \$3.34\$ \$6.08\$ \$2.62\$ \$26.22\$ \$\text{SO-49080,100295-6,8-1187}\$ \$11/12/87\$ \$1.07\$ \$13.48\$ \$0.54\$ \$3.55\$ \$\text{SO-49080,100295-6,8-1187}\$ \$11/12/87\$ \$1.20\$ \$21.40\$ \$1.67\$ \$4.30\$ \$\text{SO-49080,100295-8,10-1187}\$ \$11/12/87\$ \$1.99\$ \$0.49082,100570-0,2-1187\$ \$11/12/87\$ \$1.99\$ \$0.49082,100570-12,14-1187\$ \$11/12/87\$ \$3.99\$ \$1.5\$ \$0.49082,100570-2,4-1187\$ \$11/12/87\$ \$3.99\$ \$1.5\$ \$0.49082,100570-2,4-1187\$ \$11/12/87\$ \$3.99\$ \$3.15\$ \$0.49082,100570-2,4-1187\$ \$11/12/87\$ \$3.99\$ \$3.15\$ \$0.49082,100570-2,4-1187\$ \$11/12/87\$ \$3.99\$ \$3.15\$ \$0.49082,100570-2,4-1187\$ \$11/12/87\$ \$3.99\$ \$3.15\$ \$0.49082,100570-2,4-1187\$ \$11/12/87\$ \$3.99\$ \$3.15\$ \$3.29\$ \$3.50\$ \$3.40\$ \$3.90\$ \$3.90\$ \$3.9						37.38
\$\text{SO-49000,} 100500-a, 10-1187 \text{11/12/87} \text{1.09} \text{7.88} \text{1.33} \text{12.15} \\ \$\text{SO-49000,} 100665-0, 2-1187 \text{11/12/87} \text{2.00} \text{1.88} \text{0.94} \text{41.20} \\ \$\text{SO-49000,} 100665-10, 12-1187 \text{11/12/87} \text{5.35} \text{3.27} \qua				- •		15.97
\$0-49000,100665-0,2-1187						12.13
\$0-49000,100665-10,12-1187						41.20
\$\text{SO-49000}\$,\$100665-2,\$4-1187\$\$ \$11/12/87\$\$ \$2.63\$\$ \$15.65\$\$ \$1.43\$\$ \$136.20\$\$ \$50-49000}\$,\$100665-6,\$8-1187\$\$ \$11/12/87\$\$ \$9.87\$\$ \$9.74\$\$ \$3.01\$\$ \$46.33\$\$ \$50-49000}\$,\$100665-8,\$10-1187\$\$ \$11/12/87\$\$ \$9.58\$\$ \$12.43\$\$ \$2.72\$\$ \$49.83\$\$ \$50-49000}\$,\$9985-0,\$2-1187\$\$ \$11/11/87\$\$ \$2.94\$\$ \$9.28\$\$\$ \$MD\$\$ \$74.90\$\$ \$50-49000}\$,\$9985-2,\$4-1187\$\$ \$11/11/87\$\$ \$25.74\$\$ \$8.80\$\$ \$7.72\$\$ \$327.44\$\$ \$50-49000}\$,\$9985-4,\$6-1187\$\$ \$11/11/87\$\$ \$48.71\$\$ \$12.54\$\$ \$2.85\$\$ \$59.93\$\$ \$50-49000}\$,\$9985-6,\$8-1187\$\$ \$11/11/87\$\$ \$5.45\$\$ \$16.25\$\$ \$1.81\$\$ \$20.99\$\$ \$50-49080}\$,\$100295-0,\$2-1187\$\$ \$11/12/87\$\$ \$3.34\$\$ \$6.08\$\$ \$2.62\$\$ \$26.28\$\$ \$50-49080}\$,\$100295-2,\$4-1187\$\$ \$11/12/87\$\$ \$2.32\$\$ \$12.30\$\$ \$1.16\$\$ \$76.86\$\$ \$50-49080}\$,\$100295-4,\$6-1187\$\$ \$11/12/87\$\$ \$1.20\$\$ \$21.40\$\$ \$1.67\$\$ \$4.30\$\$ \$50-49080}\$,\$100295-8,\$10-1187\$\$ \$11/12/87\$\$ \$1.20\$\$ \$21.40\$\$ \$1.67\$\$ \$4.30\$\$ \$50-49080}\$,\$100570-0,\$2-1187\$\$ \$11/12/87\$\$ \$1.59\$\$ \$7.48\$\$ \$4.31\$\$ \$32.26\$\$ \$50-49082}\$,\$100570-10,\$12-1187\$\$ \$11/12/87\$\$ \$1.79\$\$ \$50-49082}\$,\$100570-12,\$14-1187\$\$ \$11/12/87\$\$ \$50-49082}\$,\$100570-2,\$4-1187\$\$ \$11/12/87\$\$ \$0.94\$\$ \$6.95\$\$ \$2.47\$\$ \$13.60\$\$ \$50-49082}\$,\$100570-2,\$4-1187\$\$ \$11/12/87\$\$ \$3.09\$\$ \$9.15\$\$ \$1.26\$\$ \$140.7\$\$ \$50-49082}\$,\$100570-8,\$10-1187\$\$ \$11/12/87\$\$ \$5.77\$\$ \$8.85\$\$ \$8.2\$\$ \$25.60\$ \$50-49082}\$,\$100570-8,\$10-1187\$\$ \$11/12/87\$\$ \$5.77\$\$ \$8.85\$\$ \$8.2\$\$ \$25.60\$ \$50-49082}\$,\$100570-8,\$10-1187\$\$ \$11/12/87\$\$ \$5.77\$\$ \$8.85\$\$ \$8.2\$\$ \$25.60\$ \$50-49082}\$,\$100570-8,\$10-1187\$\$ \$11/12/87\$\$ \$5.77\$\$ \$8.85\$\$ \$8.2\$\$ \$25.60\$ \$50-49082}\$,\$100570-8,\$10-1187\$\$ \$11/12/87\$\$ \$1.33\$\$ \$5.49000}\$,\$100500-12,\$14-1187\$\$ \$11/12/87\$\$ \$5.77\$\$ \$8.85\$\$ \$8.2\$\$ \$25.60\$ \$50-49082}\$,\$100570-8,\$10-1187\$\$ \$11/12/87\$\$ \$5.77\$\$ \$8.85\$\$ \$8.2\$\$ \$25.60\$ \$50-49082}\$,\$100570-8,\$10-1187\$\$ \$11/12/87\$\$ \$5.77\$\$ \$8.85\$\$ \$8.2\$\$ \$25.60\$ \$50-49082}\$,\$100570-8,\$10-1187\$\$ \$11/12/87\$\$ \$5.77\$\$ \$8.85\$\$ \$8.2\$\$ \$25.60\$ \$50-49082}\$,\$100570-8,\$10-1187\$\$ \$11/12/87\$\$ \$1.33\$\$ \$5.44\$\$ \$5.99\$\$ \$1.55\$\$ \$50-49101}\$,\$100500-12,\$14-1187\$\$ \$11/12/87\$\$ \$1.58\$\$ \$1.58\$\$ \$100.88\$\$ \$11.59\$\$ \$50-49101}\$,\$100500-12,\$4-1187\$\$ \$11/12/8				•		
\$\text{SO-49000}, 100665-4, 6-1187 \text{11/12/87} \text{2.63} \text{15.65} \text{1.43} \text{136.26} \\ \text{SO-49000}, 100665-6, 8-1187 \text{11/12/87} \text{9.87} \text{9.74} \text{3.01} \text{46.33} \\ \text{SO-49000}, 100665-8, 10-1187 \text{11/12/87} \text{9.58} \text{12.43} \text{2.72} \text{49.88} \\ \text{SO-49000}, 99985-0, 2-1187 \text{11/11/87} \text{2.94} \text{9.28} \text{ND} \text{74.96} \\ \text{SO-49000}, 99985-2, 4-1187 \text{11/11/87} \text{48.71} \text{12.54} \text{2.85} \text{59.93} \\ \text{SO-49000}, 99985-6, 8-1187 \text{11/11/87} \text{48.71} \text{12.54} \text{2.85} \text{59.93} \\ \text{SO-49000}, 99985-6, 8-1187 \text{11/11/87} \text{3.34} \text{6.08} \text{2.62} \text{26.22} \\ \text{SO-49080}, 100295-0, 2-1187 \text{11/12/87} \text{3.34} \text{6.08} \text{2.62} \text{26.22} \\ \text{SO-49080}, 100295-2, 4-1187 \text{11/12/87} \text{1.07} \text{3.48} \text{0.54} \text{3.65} \\ \text{SO-49080}, 100295-4, 6-1187 \text{11/12/87} \q						
\$0-49000,100665-6,8-1187						
\$\text{SO-49000,} 100665-8, 10-1187						
\$0-49000, 99985-0, 2-1187						
\$0-49000, 99985-2, 4-1187						
\$0-49000, 99985-4, 6-1187						
\$0-49000, 99985-6,8-1187						
\$0-49080,100295-0,2-1187						
\$0-49080,100295-2,4-1187						
\$0-49080,100295-4,6-1187						
\$0-49080,100295-6,8-1187						
\$0-49080,100295-8,10-1187						
\$0-49082,100570-0,2-1187						
\$0-49082,100570-10,12-1187						
\$0-49082,100570-12,14-1187	· · · · · · · · · · · · · · · · · · ·					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•					
SO-49082,100570-2,4-1187 11/12/87 3.09 9.15 1.26 140.7 SO-49082,100570-4,6-1187 11/12/87 4.93 6.11 1.29 106.9 SO-49082,100570-6,8-1187 11/12/87 5.77 8.85 8.2 25.6 SO-49082,100570-8,10-1187 11/12/87 5.17 7.87 2.95 32.6 SO-49101,100500-0,2-1187 11/12/87 1.3 9.53 3.58 34.2 SO-49101,100500-10,12-1187 11/12/87 1.43 1.55 1202.49 8.6 SO-49101,100500-12,14-1187 11/12/87 1.58 1.58 1108.81 12.9 SO-49101,100500-14,16-1187 11/12/87 1.32 1.44 53.9 11.5 SO-49101,100500-2,4-1187 11/12/87 0.93 ND 141.32 88.3 SO-49101,100500-4,6-1187 11/12/87 1.11 1.11 1285.56 7.0						
S0-49082,100570-4,6-1187 11/12/87 4.93 6.11 1.29 106.9 S0-49082,100570-6,8-1187 11/12/87 5.77 8.85 8.2 25.6 S0-49082,100570-8,10-1187 11/12/87 5.17 7.87 2.95 32.6 S0-49101,100500-0,2-1187 11/12/87 1.3 9.53 3.58 34.2 S0-49101,100500-10,12-1187 11/12/87 1.43 1.55 1202.49 8.6 S0-49101,100500-12,14-1187 11/12/87 1.58 1.58 1108.81 12.9 S0-49101,100500-14,16-1187 11/12/87 1.32 1.44 53.9 11.5 S0-49101,100500-2,4-1187 11/12/87 0.93 ND 141.32 88.3 S0-49101,100500-4,6-1187 11/12/87 1.11 1.11 1285.56 7.0						
SO-49082,100570-6,8-1187 11/12/87 5.77 8.85 8.2 25.6 SO-49082,100570-8,10-1187 11/12/87 5.17 7.87 2.95 32.6 SO-49101,100500-0,2-1187 11/12/87 1.3 9.53 3.58 34.2 SO-49101,100500-10,12-1187 11/12/87 1.43 1.55 1202.49 8.6 SO-49101,100500-12,14-1187 11/12/87 1.58 1.58 1108.81 12.9 SO-49101,100500-14,16-1187 11/12/87 1.32 1.44 53.9 11.5 SO-49101,100500-2,4-1187 11/12/87 0.93 ND 141.32 88.3 SO-49101,100500-4,6-1187 11/12/87 1.11 1.11 1285.56 7.0						
SO-49082,100570-8,10-1187 11/12/87 5.17 7.87 2.95 32.6 SO-49101,100500-0,2-1187 11/12/87 1.3 9.53 3.58 34.2 SO-49101,100500-10,12-1187 11/12/87 1.43 1.55 1202.49 8.6 SO-49101,100500-12,14-1187 11/12/87 1.58 1.58 1108.81 12.9 SO-49101,100500-14,16-1187 11/12/87 1.32 1.44 53.9 11.5 SO-49101,100500-2,4-1187 11/12/87 0.93 ND 141.32 88.3 SO-49101,100500-4,6-1187 11/12/87 1.11 1.11 1285.56 7.0						
SO-49101,100500-0,2-1187 11/12/87 1.3 9.53 3.58 34.2 SO-49101,100500-10,12-1187 11/12/87 1.43 1.55 1202.49 8.6 SO-49101,100500-12,14-1187 11/12/87 1.58 1.58 1108.81 12.9 SO-49101,100500-14,16-1187 11/12/87 1.32 1.44 53.9 11.5 SO-49101,100500-2,4-1187 11/12/87 0.93 ND 141.32 88.3 SO-49101,100500-4,6-1187 11/12/87 1.11 1.11 1285.56 7.0	•					
SO-49101,100500-10,12-1187 11/12/87 1.43 1.55 1202.49 8.6 SO-49101,100500-12,14-1187 11/12/87 1.58 1.58 1108.81 12.9 SO-49101,100500-14,16-1187 11/12/87 1.32 1.44 53.9 11.5 SO-49101,100500-2,4-1187 11/12/87 0.93 ND 141.32 88.3 SO-49101,100500-4,6-1187 11/12/87 1.11 1.11 1285.56 7.0	•					
SO-49101,100500-12,14-1187 11/12/87 1.58 1.58 1108.81 12.9 SO-49101,100500-14,16-1187 11/12/87 1.32 1.44 53.9 11.5 SO-49101,100500-2,4-1187 11/12/87 0.93 ND 141.32 88.3 SO-49101,100500-4,6-1187 11/12/87 1.11 1.11 1285.56 7.0	· · · · · · · · · · · · · · · · · · ·					
SO-49101,100500-14,16-1187 11/12/87 1.32 1.44 53.9 11.5 SO-49101,100500-2,4-1187 11/12/87 0.93 ND 141.32 88.3 SO-49101,100500-4,6-1187 11/12/87 1.11 1.11 1285.56 7.0	•					
S0-49101,100500-2,4-1187 11/12/87 0.93 ND 141.32 88.3 S0-49101,100500-4,6-1187 11/12/87 1.11 1.11 1285.56 7.0	•					
SO-49101,100500-4,6-1187 11/12/87 1.11 1.11 1285.56 7.0						
- COLADOO COMBOO & U 1107 1107 1107 1 LU 1 71 1764 64 64	S0-49101,100500-4,6-1187 S0-49101,100500-6,8-1187	11/12/87	1.11		1354.64	6.68

TABLE B-1 (continued)

ADMINISTRATION BUILDING ARRA IRA SOILS RESULTS - ANIONS

LOGAMION	DAME		CONCENTRA	ATION (UG/	G)
LOCATION	DATE SAMPLED	CHLORIDE	FLOURIDE	NITRATE	SULFATE
SO-49101,100500-8,10-1187	11/12/87	1.49	1.49	1297.08	6.81
SO-49132,100440-0,2-1187	11/12/87	1.40	4.55	3.27	77.56
SO-49132,100440-10,12-1187	11/12/87	0.85	8.41	2.68	15. 4 8
SO-49132,100440-12,14-1187	11/12/87	0.83	5.13	2.62	13.23
SO-49132,100440-14,16-1187	11/12/87	54.93	2.52	3.49	18.75
SO-49132,100440-2,4-1187	11/12/87	0.83	5.01	1.07	129.93
SO-49132,100440-4,6-1187	11/12/87	0.95	11.19	1.9	16.79
SO-49132,100440-6,8-1187	11/12/87	0.7	12.39	3.39	13.32
SO-49132,100440-8,10-1187	11/12/87	1.06	9.78	8.72	11.19
SO-49160,100500-0,2-1187	11/12/87	3.54	10.06	1.49	46.31
SO-49160,100500-10,12-1187	11/12/87	4.86	10.94	4.13	6.69
SO-49160,100500-2,4-1187	11/12/87	3.87	10.89	2.42	35.93
SO-49160,100500-4,6-1187	11/12/87	5.97	15.45	2.11	5.97
SO-49160,100500-6,8-1187	11/12/87	4.87	14.71	3.68	5.46
\$0-49160,100500-8,10-1187	11/12/87	4.40	13.56	2.62	5.35
SO-49172,100180-0,2-1187	11/11/87	9.77	13.49	2.76	170.77
SO-49172,100180-2,4-1187	11/11/87	25,59	12.19	2.66	237.63
SO-49172,100180-4,6-1187	11/11/87	30.12	11.81	1.09	14.94
SO-49172,100180-6,8-1187	11/11/87	26.00	14.26	7.48	16.30
SO-49250,100140-0,2-1187	11/10/87	2.36	10.87	0.82	136.90
SO-49250,100140-2,4-1187	11/10/87	7.88	5.93	1.08	1548.14
SO-49250,100140-4,6-1187	11/10/87	22.58	11.72	4.00	17.94
SO-49250,100140-6,8-1187	11/10/87	1.60	11.66	1.14	30.86
SO-49250,100140-8,10-1187	11/10/87	0.86	12.92	1.80	14.34
SO-49475,99985-0,2-1187	11/10/87		8.53	12.97	89.22
SO-49475,99985-10,12-1187	11/10/87	4.07	19.39	3.78	15.42
SO-49475,99985-2,4-1187	11/10/87	1.81	5.69	9.86	116.34
SO-49475,99985-4,6-1187	11/10/87	4.17	8.57	2.25	43.04
SO-49475,99985-6,8-1187	11/10/87	5.55	10.75	12.45	25.25
\$0-49475,99985-8,10-1187	11/10/87	4.88	13.25	2.85	11.95

TABLE B-1

ADMINISTRATION BUILDING AREA IRA SOILS RESULTS - ANIONS

. OG IMYON	DAME		CONCENTRA	ATION (UG/	G)
LOCATION	DATE SAMPLED	CHLORIDE	FLOURIDE	NITRATE	SULFATE
SO-49000,100180-0,2-1187	11/11/87	1.07	12.44	2.68	91.62
SO-49000,100180-2,4-1187	11/11/87	4.40	21.13	1.87	58.11
SO-49000,100180-4,6-1187	11/11/87	1.53	17.60	2.84	28.30
SO-49000,100180-6,8-1187	11/11/87	9.61	19.64	3.59	19.15
SO-49000,100295-0,2-1187	11/11/87	1.93	9.66	4.52	33.57
SO-49000,100295-2,4-1187	11/11/87	12.79	9.76	1.73	163.41
SO-49000,100295-4,6-1187	11/11/87	19.39	12.10	1.40	27.73
SO-49000,100295-6,8-1187	11/11/87	13.09	14.88	5.51	31.91
SO-49000,100500-0,2-1187	11/12/87	1.60	9.72	2.63	39.47
SO-49000,100500-10,12-1187	11/12/87	1.08	7.20	3.48	8.16
SO-49000,100500-2,4-1187	11/12/87	0.46	10.04	1.15	60.38
SO-49000,100500-4,6-1187	11/12/87	0.61	5.99	0.98	37.38
SO-49000,100500-6,8-1187	11/12/87	1.01	7.92	2.89	15.97
SO-49000,100500-8,10-1187	11/12/87	1.09	7.88	1.33	12.13
SO-49000,100665-0,2-1187	11/12/87	2.00	1.88	0.94	41.20
SO-49000,100665-10,12-1187	11/12/87	5.35	13.75	2.04	8.91
SO-49000,100665-2,4-1187	11/12/87	4.84	12.96	3.27	127.31
SO-49000,100665-4,6-1187	11/12/87	2.63	15.65	1.43	136.20
SO-49000,100665-6,8-1187	11/12/87	9.87	9.74	3.01	46.32
\$0-49000,100665-8,10-1187	11/12/87	9.58	12.43	2.72	49.83
SO-49000,99985-0,2-1187	11/11/87	2.94	9.28	ND	74.90
SO-49000,99985-2,4-1187	11/11/87	25.74	8.80	7.72	327.44
SO-49000, 99985-4, 6-1187	11/11/87	48.71	12.54	2.85	59.93
SO-49000, 99985-6, 8-1187	11/11/87	5.45	16.25	1.81	20.97
SO-49080,100295-0,2-1187	11/12/87	3.34	6.08	2.62	26.25
SO-49080,100295-2,4-1187	11/12/87	2.32	12.30	1.16	76.84
\$0-49080,100295-4,6-1187	11/12/87	1.07	13.48	0.54	3.53
SO-49080,100295-6,8-1187	11/12/87	1.20	21.40	1.67	4.30
SO-49080,100295-8,10-1187	11/12/87	0.84	12.86	2.88	8.05
SO-49082,100570-0,2-1187	11/12/87	1.59	7.48	4.31	32.29
SO-49082,100570-10,12-1187	11/12/87	45.3	2.98	6.2	21.34
SO-49082,100570-12,14-1187	11/12/87	1.17	11.15	5.4	17.36
SO-49082,100570-14,16-1187	11/12/87	0.94	6.95	2.47	13.66
SO-49082,100570-2,4-1187	11/12/87	3.09	9.15	1.26	140.7
SO-49082,100570-4,6-1187	11/12/87	4.93	6.11	1.29	106.91
SO-49082,100570-6,8-1187	11/12/87	5.77	8.85	8.2	25.64
SO-49082,100570-8,10-1187	11/12/87	5.17	7.87	2.95	32.61
SO-49101,100500-0,2-1187	11/12/87	1.3	9.53	3.58	34.24
\$0-49101,100500-10,12-1187	11/12/87	1.43	1.55	1202.49	8.61
\$0-49101,100500-12,14-1187	11/12/87	1.58	1.58	1108.81	12.92
SO-49101,100500-14,16-1187	11/12/87	1.32	1.44	53.9	11.5
SO-49101,100500-2,4-1187	11/12/87	0.93	ND	141.32	88.38
SO-49101,100500-4,6-1187	11/12/87	1.11	1.11	1285.56	7.02
SO-49101,100500-6,8-1187	11/12/87	1.58	1.21	1354.64	6.68

TABLE B-1 (continued)

ADMINISTRATION BUILDING AREA IRA SOILS RESULTS - ANIONS

LOGARION	Dimp		CONCENTRA	ATION (UG/	G)
LOCATION	DATE SAMPLED	CHLORIDE	FLOURIDE	NITRATE	SULFATE
SO-49101,100500-8,10-1187	11/12/87	1.49	1.49	1297.08	6.81
SO-49132,100440-0,2-1187	11/12/87	1.40	4.55	3.27	77.56
SO-49132,100440-10,12-1187	11/12/87	0.85	8.41	2.68	15.48
SO-49132,100440-12,14-1187	11/12/87	0.83	5.13	2.62	13.23
SO-49132,100440-14,16-1187	11/12/87	54.93	2.52	3.49	18.75
SO-49132,100440-2,4-1187	11/12/87	0.83	5.01	1.07	129.93
SO-49132,100440-4,6-1187	11/12/87	0.95	11.19	1.9	16.79
SO-49132,100440-6,8-1187	11/12/87	0.7	12.39	3.39	13.32
SO-49132,100440-8,10-1187	11/12/87	1.06	9.78	8.72	11.19
SO-49160,100500-0,2-1187	11/12/87	3.54	10.06	1.49	46.31
SO-49160,100500-10,12-1187	11/12/87	4.86	10.94	4.13	6.69
SO-49160,100500-2,4-1187	11/12/87	3.87	10.89	2.42	35.93
SO-49160,100500-4,6-1187	11/12/87	5.97	15.45	2.11	5.97
SO-49160,100500-6,8-1187	11/12/87	4.87	14.71	3.68	5.46
SO-49160,100500-8,10-1187	11/12/87	4.40	13.56	2.62	5.35
SO-49172,100180-0,2-1187	11/11/87	9.77	13.49	2.76	170.77
SO-49172,100180-2,4-1187	11/11/87	25.59	12.19	2.66	237.63
SO-49172,100180-4,6-1187	11/11/87	30.12	11.81	1.09	14.94
SO-49172,100180-6,8-1187	11/11/87	26.00	14.26	7.48	16.30
SO-49250,100140-0,2-1187	11/10/87	2.36	10.87	0.82	136.90
SO-49250,100140-2,4-1187	11/10/87	7.88	5.93	1.08	1548.14
SO-49250,100140-4,6-1187	11/10/87	22.58	11.72	4.00	17.94
SO-49250,100140-6,8-1187	11/10/87	1.60	11.66	1.14	30.86
SO-49250,100140-8,10-1187	11/10/87	0.86	12.92	1.80	14.34
\$0-49475,99985-0,2-1187	11/10/87	1.82	8,53	12.97	89.22
\$0-49475,99985-10,12-1187	11/10/87	4.07	19.39	3.78	15.42
SO-49475,99985-2,4-1187	11/10/87	1.81	5.69	9.86	116.34
SO-49475,99985-4,6-1187	11/10/87	4.17	8.57	2.25	43.04
\$0-49475,99985-6,8-1187	11/10/87	5.55	10.75	12.45	25.25
SO-49475,99985-8,10-1187	11/10/87	4.88	13.25	2.85	11.95

TABLE B-2

AMINISTRATION BUILDING AREA IRA SOILS RESULTS - METALS

	Zn	23.2	33.8	18.5	21.4	28.3	19.2	14.2	21.4	49.0	16.6	27.0	35.2	22.4	22.2	42.7	14.1	28.3	22	19.6	17.3	28.1	20.9	16.0	15.2	27.4	22.9	28.5	20.6	20.0	41.1	12	14.4
	٨	47.2	49.8	33.8	37.4	40.5	41.7	32.7	44.4	43.5	42.2	33.9	64.4	42.2	31.8	38.7	35.5	33	36	28.9	39.3	38.8	46.2	25.8	32.1	38.9	27.0	31.0	17.2	27.3	27.6	24.2	8.12
	I	R	2	R	오	2	Q	2	웆	2	2	2	욷	욷	문	문	물	욷	물	문	욷	문	2	문	R		욷	R	2	2	2 :	2 9	2
	Na	욷	R	문	足	旲	욷	물	2	R	R	2	2	2	足	웆	웆	2	욷	웆	681	웆	707	욷	2	웆	딡	문	욷	R	2 !	2 !	₹
	Ag	R	R	물	욷	ę	R	욷	2	1.5	R	 	2.0	1.2	1.0	1.3	2	웆	2	2	욷	2	2	2	2	1.4	웆	물	2	2	오 !	2 !	3
	Se	2	2	욷	웆	Z		문	R	욷	문	旲	문	문	R	R	R	2	R	2	문	2	2	욷	2	2	2	문	문	2	2	₽!	2
	×	2	욷	2	웆	旲	2	2	足	952	물	욷	999		R	717	R	R	旲	2	2	2	2	2	2	2	2	682	욷	욷	오!	2 !	2
	Ni	15.6	14.3	10.5	15.7	15.0	11.7	9.2	15.4	27.2	12.0	12.5	18.7	10.9	13.5	21.1	15.3	18.6	9.7	14.7	7.9	13.2	13.0	8.5	9.5	13.6	11.5	15.2	12.3	16.5	17.7	14.4	11.3
	Hg	읒	문	욷	웆	읒	읒	물	R	0.1	웆	물	ᄝ	ᄝ		R	2	욷	ᄝ	旲	2	웆	2	웆	읒	웆	문	운	R	R	2	2	2
	Æ	1440	86.4	74.4	104	1514	341	38.7	93.2	705	46	802	1747	9.99 9	30.9	534	46.1	610	685	437	50.7	227	404	66.5	62	8	78.8	81.4	55.1	238	459	73	70
	M	2857	3494	2166	2075	2086	2297	1715	2022	3615	1704	2101	3054	23.2	2031	2690	1690	2005	1691	1991	1935	2667	2527	2141	1772	2601	2234	2515	1961	1959	7680	1583	1842
	Li	6.5	11.2	2	Q	6.7	R	Đ	2	15.2	R	8.9	13.6	2	R	8.9	2	8.7	9.9	9.7	2	7.5	R	R	딡	7.0	2	2	R	R	6.2	2	2
(DC/C)	Pb I																														6.3		
	ът 9																							_			_		_		17188	_	
Soncentration	3	9.5	10.8	7.3	8.4	8.0	8.2	7.5	10.7	20.8	10.4	13.2	14.2	13.5	11.6	23	8.2	7.5	6.7	5.9	11.6	7.0	7.7	7.0	7.3	13.4	9.5	10.6	7.7	8.7	15.9	6.2	6.3
Conc	පි	7.6	물	R	R	5.5	17.3	2	욷	11.4	6.7	11.3	27.5	R	R	11.2	Ę	6.01	11.1	6.7	문	10.0	8.9	9.5	욷	문	2	8.7	2	23.8	∞	2	2
	អូ																														17		
	Ça	13627	4584	3667	3249	3602	3594	3115	3365	3472	3455	2113	3151	3809	3201	3396	3877	1611	1846	2563	4090	4670	4293	4006	3361	3770	2925	2815	3013	3371	2878	3195	4065
	g	R	2	£	R	0.7	2	R	물	1.5	2	6.0	1.2	8.0	9.0	2	2	웆	2	R	2	2	R	2	足	8.0	R	0.5	9.0	R	2	R	욷
٠	Be	1.2	-	0.9	0.9	0.9	0.9	0.8	1.2	_	8 1.0	0.7	1.2	0.8	0.7	1:1	8.0	0.8	0.7	9.0	0.8	0.9	1.0	0.7	6.0	0.8	8.0	1.2	1.2	1.4	0.8	0.8	1.2
	Ba	248	88	95.2	8	234	127	223	59.0	253	57.88	195	299	88	59.1	142	78	229	164	154	83	157	261	441	150	169	112	113	110	163	220	88	40.9
	As	16.6	34	16.7	8.9	13.0	22.7	20.7	31.7	10.2	7.3	7.9	2.3	ω «	10.0	29.4	10.8	9.5	11.1	10.9	13.8	9.7	27.6	14.5	13.2	7.6	7.1	3.9	4.4	8.1	16.5	16	8.1
	S	R	R	2	R	2	R	2	2	0.9	R	R	2		Q	Q	2	2	R	旲	욷	0.9	웆	읒	문	R	2	R	R	7.6	오	문	R
	A1	14481	30008	13658	16070	11272	13665	11027	15873	14758	12046	10638	25260	16432	16139	14044	12147	10528	10717	13234	16192	11870	13528	11343	10260	16547	15103	18771	14060	14231	8681	12361	11897
1	Date Sampled	11/11/87	11/11/87	11/11/87	11/11/87	11/11/87	11/11/87	11/11/87	11/11/87	11/12/87	7 11/12/87	11/12/87	11/12/87	11/12/87	11/12/87	11/12/87	7 11/12/87	11/12/87	11/12/87	11/12/87	11/12/87	11/11/87	11/11/87	11/11/87	11/11/87	11/12/87	11/12/87	11/12/87	11/12/87	11/12/87	_	7 11/12/87	7 11/12/87
	Location	50-49000,100180-0,2-1187	50-49000,100180-2,4-1187	50-49000, 100180-4, 6-1187	50-49000, 100180-6, 8-1187	\$0-49000,100295-0,2-1187	50-49000,100295-2,4-1187	50-49000, 100295-4, 6-1187	50-49000,100295-6,8-1187	50-49000,100500-0,2-1187	S0-49000, 100500-10, 12-1187	50-49000,100500-2,4-1187	50-49000, 100500-4, 6-1187	50-49000, 100500-6, 8-1187	50-49000, 100500-8, 10-1187	50-49000,100665-0,2-1187	50-49000,100665-10,12-1187	50-49000,100665-2,4-1187	50-49000, 100665-4, 6-1187	50-49000,100665-6,8-1187	50-49000,100665-8,10-1187	50-49000, 99985-0, 2-1187	50-49000, 99985-2, 4-1187	S0-49000, 99985-4, 6-1187	50-49000,99985-6,8-1187	50-49080, 100295-0, 2-1187	SO-49080, 100295-2, 4-1187	50-49080, 100295-4, 6-1187	50-49080,100295-6,8-1187	50-49080, 100295-8, 10-1187	50-49082, 100570-0, 2-1187	50-49082,100570-10,12-1187	SO-49082, 100570-12, 14-1187

TABLE B-2 (continued)

ADMINISTRATION BUILDING ARRA IRA SOILS RESULTS - METALS

	Zn	19.4 25.4 17.7 18.7 18.3 18.3 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
	۸	19.3 34.2 34.2 34.2 31.8 31.8 31.8 31.8 32.9 32.6 4.2 32.6 32.6 32.6 4.2 32.6 32.6 32.6 32.6 32.6 32.6 32.6 32
	Ţ	
	Na	
	Ag	1.3 A B B B B B B B B B B B B B B B B B B
	Se	
	K	
	Ni	23.5 14.2 35.5 11.2 15.6 19.8 13.3 13.3 13.3 10.0 10.0 10.4 10.3 10.4 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8
	Bg	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	Æ	64 611 246 49.1 32.6 49.1 32.6 65.5 814 43.3 48.8 173.5 805 173 805 173 805 173 805 173 173 173 173 173 173 173 173 173 173
	Mg Mg	1895 1830 2074 2025 1846 2167 1978 1994 1994 11994 1104 1104 1104 1104 110
	Li	86.9 10.8
	TP	4.2 12.7 17.7 17.7 17.7 17.7 17.7 17.3 17.3 17
	He H	11065 113910 15543 15895 20020 13738 11563 8130 18407 11353 14507 11306 20505 14722 25155 6217 11370 11370 11370 11419 9511 13285 20970 14325 14325 14325 14325 14325 13385 13
	ಶ	8.2 8.2 8.3 8.3 8.3 8.3 8.3 11.1 10.5 11.1 10.5 11.1 10.5 11.3 11.3 11.4 11.3 11.4 11.3 11.3 11.4 11.3 11.4 11.3 11.4 11.3 11.4 11.3 11.4 11.3 11.4 11.3 11.4 11.5 11.0 11.5 11.0 1
(9/90)	පි	14.2 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9
ation	ಟ	34 664 664 222.4 222.4 117.6 117.6 117.5 1
Concentration	Ca	3932 1865 2532 3820 3814 2958 3407 3931 344 3522 344 3522 344 3523 3046 3015 3010 3010 3012 3016 3012 3016 3016 3016 3017 3016 3017 3017 3017 3017 3017 3017 3017 3017
	g	
	Be	11.3 11.2 11.2 11.2 11.2 11.3 11.3 11.3
	Ba	39.8 1175 128 166.4 145 43.4 37.8 36 38.1 36 38.1 36 38.1 178 56.3 178 56.3 179 67 67 67 67 179 172 82 67 67 172 173 174 175 178 178 178 178 178 178 178 178 178 178
	As	10.6 13.6 13.6 13.6 13.6 14.7 14.9 14.4 14.9 14.4 14.9 14.9 16.2 16.2 16.2 16.2 16.2 16.2 16.2 16.2
ľ	eS S	
	A1	13055 7401 13687 13101 13101 13101 13101 13101 13101 13101 13101 13101 13100 1
	Date Sampled	11/12/87 1 11/12/87 1
	Location S	\$0-49082, 100570-14, 16-1187 1 \$0-49082, 100570-2, 4-1187 1 \$0-49082, 100570-4, 6-1187 1 \$0-49082, 100570-6, 8-1187 1 \$0-49082, 100570-8, 10-1187 1 \$0-49082, 100500-0, 2-1187 1 \$0-49101, 100500-12, 14-1187 1 \$0-49101, 100500-14, 16-1187 1 \$0-49101, 100500-14, 16-1187 1 \$0-49101, 100500-14, 16-1187 1 \$0-49101, 100500-14, 16-1187 1 \$0-49132, 100440-12, 14-1187 1 \$0-49132, 100440-14, 16-1187 1 \$0-49132, 100440-14, 16-1187 1 \$0-49132, 100440-14, 16-1187 1 \$0-49132, 100440-6, 8-1187 1 \$0-49132, 100440-6, 8-1187 1 \$0-49132, 100500-0, 2-1187 1 \$0-4916, 100500-0, 2-1187 1 \$0-4916, 100500-1, 1-1187 1 \$0-4916, 100500-1, 1-1187 1 \$0-4916, 100500-1, 1-1187 1 \$0-4916, 100500-1, 1-1187 1 \$0-49172, 100180-0, 2-1187 1 \$0-49172, 100180-2, 4-1187 1 \$0-49172, 100180-6, 8-1187 1 \$0-49172, 100180-6, 8-1187 1 \$0-49250, 100140-2, 4-1187 1 \$0-49250, 100140-2, 4-1187 1

TABLE B-2 (continued)

ADMINISTRATION BUILDING ARRA IRA SOILS RESULTS - METALS

	Date									ت	oncentr	Concentration (UG/G)	(9/90)												
Location	Sampled	N1	SS	Às	Ва	Be	8	Ca	ភូ	9	r Cr	년 9	Q.	ij	5g W	Ž	fg	Ni	×	જુ	Åg	Na I	T1 V	.7	Zn
S0-49250.100140-6.8-1187	11/10/87	12953	Ę	8 2	123	6	. 5	2916	15.6	Ę	α 4	ı	7.7	Ę	1613	, 5		1	Į į	Ę	l	1 5	3,4		-
50-49250, 100140-8, 10-1187	11/10/87	10344	2	14.1	136	1.3	2	2862	14.8	9 0	9.9	17504	26.5	2	1429	233	2 2	10.1	2	2 2	2 2	2	38.5		12.3
SO-49475, 99985-0, 2-1187	11/10/87	14329	2	23.4	184		8.0	11523	21.8	12.5	17.9		17	8.8	4364	771	•	•	%	呈			ND 42.		2
SO-49475, 99985-10, 12-1187	11/10/87	12009	2	6	64		2	3462	14.4	오	7.8		4.9	2	1442	57.2			2	2					3
S0-49475, 99985-2, 4-1187	11/10/87	13701	2	16.6	246		9.0	18408	21.4	16.2	15.4		26.5	6.9	2405]	176			2	2					ī.
S0-49475, 99985-4, 6-1187	11/10/87	11682	2	16.8	22.3		0.7	15788	20.3	10.1	22.1		76	8.9	2499	304			2	R					5
50-49475, 99985-6, 8-1187	11/10/87	8271	R	7.1	230	_	R	2945	20.1	R	11.4		5.8	Q	1545	63			2	2					<u>د</u>
SO-49475, 99985-8, 10-1187	11/10/87	12095	욷	8.2	92.4	6.0	R	3333	14.8	7.1	5.5		8.8		1435	88			R						7.5

TABLE B-3
Ash Pond Dike IRA Soils Results - Anions

LOGIMION	DAME		CONC	ENTRATION	(UG/G)
LOCATION	DATE SAMPLED	CHLORIDE	FLOURIDE	NITRATE	SULFATE
SO-51100,100335-0,2-1187	11/09/87	3,71	5.95	6.76	26.76
SO-51100,100335-2,4-1187	11/09/87	4.09	1.75	10.67	79.55
SO-51100,100335-4,6-1187	11/09/87	3.93	9.27	2.29	26.67
SO-51100,100335-6,8-1187	11/09/87	4.17	7.71	1.87	23.81
SO-51100,100335-8,10-1187	11/09/87	3.37	9.22	4.42	11.5
SO-51125,100260-0,2-1187	11/09/87	4.67	1.29	1.57	21.64
SO-51125,100260-2,4-1187	11/09/87	0.99	1.5	1.35	19.47
SO-51125,100260-4,6-1187	11/09/87	4.01	5.35	1.76	17.97
SO-51125,100260-6,8-1187	11/09/87	4.97	5.52	96.47	12.29
SO-51125,100260-8,10-1187	11/09/87	4.14	10.38	5.3	7.48
SO-51150,100220-0,2-1187	11/09/87	5.71	4.82	2.20	42.09
SO-51150,100220-2,4-1187	11/09/87	2.74	4.85	5.53	26.81
SO-51150,100220-4,6-1187	11/09/87	4.16	7.29	3.99	25.66
SO-51150,100220-6,8-1187	11/09/87	4.36	8.98	2.13	25.55
SO-51150,100220-8,10-1187	11/09/87	4.44	7.62	8.86	26.05
SO-51180,100335-0,2-1187	11/09/87	2.39	8.05	1.66	123.5
SO-51180,100335-2,4-1187	11/09/87	3.51	9.08	2.89	150.9
SO-51308,100085-0,2-1187	11/09/87	5.58	4.39	4.46	17.98
SO-51308,100085-2,4-1187	11/09/87	1.55	ND	0.89	58.63
\$0-51308,100085-4,6-1187	11/09/87	3.53	1.87	1.74	37.97
\$0-51308,100085-6,8-1187	11/09/87	1.53	ND	3.38	97.77
\$0-51308,100085-8,10-1187	11/09/87	1.48	ND	18.23	62.20

TABLE B-4

Ash Pond Dike IRA Soils Results - Metals

SAPELLION LOCATION SAPELLION LOCATION SAPELLION LOCATION SAPELLION LOCATION SAPELLION LOCATION LOCA		7. Amb									g	CONCENTRATION (UG/G)	TON (UC	(9/									
11/09/87 12344 ND 21.2 2844 1 1.5 3945 20.6 15.6 14.3 20464 19.6 7.5 2390 1546 ND 17.3 805 ND 1.27 ND ND 11/09/87 12324 ND 2.6 12.2 1.	ON	SAMPLED	Al	SS	As	Ba	Be	g	Ça	Çr.	కి		ъе	<u> </u>	5	¥i						Λ	!
11/09/87 12294 ND 5 162 12. 0.9 3281 24.5 36 9.8 20037 18.2 24.3 865 ND 14.3 ND	100335-0,2-1187	11/09/87	14142	2	21.2	284																	
11/09/87 2184 W 5 162 1.2 0.9 3281 24.5 36 9.8 20037 18.2 9.2 2473 865 M 0 14.3 M 0 M	100335-2, 4-1187	11/09/87	12294	2	7.6	192	0.7	-															
11/09/87 12164 ND 8 105 0.9 0.8 3311 15.7 ND 8.3 16991 12.7 ND 1860 110 ND 8.1 ND ND ND ND ND ND ND N	100335-4, 6-1187	11/09/87	21184	R	Ŋ	162	1.2		-														
11/09/87 12644 ND 0.6 2.06 3 0.8 5.26 11.2 11.4 20.6 311.2 11.4 20.4 6.9 18.0 18.0 13.5 ND 11.5 ND ND ND ND ND ND ND N	100335-6,8-1187	11/09/87	12164	욷	80	105	6.0																
11/09/87 12164 ND 21.1 175 0.9 0.8 1655 178 18.2 11.2 19474 20.4 6.9 1860 1345 ND 11.5 ND ND ND ND ND ND ND N	,100335-8,10-1187	11/09/87	15849	웆	10.6	206	က																
11/09/87 11004 ND 18.7 120 0.8 ND 1579 18.6 6.9 8.9 16868 6.3 ND 1454 497 ND 11.5 ND ND ND ND ND ND ND N	,100260-0,2-1187	11/09/87	12164	문	21.1	175	6.0																
11/09/87 125244 ND 11.8 103 1.1 0.8 5322 25 7.8 15.4 30548 20.9 ND 2769 161 ND 35.9 ND ND ND ND ND ND ND N	,100260-2,4-1187	11/09/87	11004	足	18.7	120	8.0																
11/09/87 1976 ND 20.9 1.6 0.8 5222 2.5 7.8 15.4 30548 20.9 ND 2769 161 ND 365.9 ND 365.0 1.0 3.321 1.9 1.9 1.0 1.2 1.0 1	,100260-4,6-1187	11/09/87	25244	2	11.8	103	1.1																
11/09/87 12591 ND 22.2 108 2.8 0.7 3321 19 8.3 19.2 20113 7.9 ND 2061 352 ND 41.9 ND ND ND ND ND ND 11/09/87 12019 ND 10.8 260 1 ND 2501 17.1 9.5 12.4 18219 12.2 ND 2175 633 ND 14.2 ND ND ND ND ND ND 11/09/87 12019 ND 5.6 85 0.7 ND 3663 23.7 ND 6.5 1923 4 ND 1588 53.5 ND 14.2 ND ND ND ND ND ND 11/09/87 13236 ND 25.5 81 0.9 ND 2996 15 ND 12.4 1750 6.66 1623 37 ND 17 ND ND ND ND ND ND 11/09/87 13859 ND 7.2 188 1 0.9 ND 2996 15 ND 12.4 1750 6.66 1623 37 ND 18.7 ND 19.5 ND ND ND ND ND ND 11/09/87 13859 ND 7.2 188 1 0.9 ND 2996 15 ND 12.4 1750 8.5 2437 440 ND 14.2 ND ND ND ND ND ND ND 11/09/87 1365 ND 5.8 31 0.7 ND 1073 9.7 ND 9.8 13542 14 ND 1317 340 ND 14.2 ND ND ND ND ND ND 11/09/87 13246 ND 5.8 31 0.7 ND 1073 9.7 ND 9.1 11/09/87 13261 ND 5.8 31 0.7 ND 1073 9.7 ND 9.1 11/09/87 13261 ND 13.4 48 1.3 0.6 1266 17.8 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4	,100260-6,8-1187	11/09/87	19761	2	20.9	1.6	8.0																
11/09/87 12678 ND 5.6 85 0.7 ND 2501 17.1 9.5 12.4 18219 12.2 ND 2175 633 ND 14.2 ND ND ND ND ND ND ND 11/09/87 12678 ND 5.6 85 0.7 ND 2356 31 ND 8.5 12.4 ND 1588 53.5 ND 9.6 ND	,100260-8,10-1187	11/09/87	12591	물	22.2	108	8.7											-				-	
11/09/87 12678 ND 5.6 85 0.7 ND 3063 23.7 ND 6.5 19623 4 ND 1588 53.5 ND 9.6 ND ND ND ND ND 44.6 11/09/87 13236 ND 25.7 66 ND ND 2970 16.5 ND 8.7 17780 6.66 1623 37 ND 17 ND	,100220-0,2-1187	11/09/87	12019	물	10.8	208	_															-	
11/09/87 19028 ND 25.5 81 0.9 ND 3356 31 ND 8.5 22677 4.7 2059 48 ND 15 ND ND ND ND ND ND ND 71.4 11/09/87 13236 ND 25.7 66 ND ND 2970 16.5 ND 8.7 17780 6.66 1623 37 ND 17 ND	,100220-2,4-1187	11/09/87	12678	물	5.6	8	0.7		-								_					-	
11/09/87 13236 ND 25.7 66 ND ND 2996 15 ND 12.4 17502 11.4 ND 1687 78.1 ND 17.8 ND ND ND ND ND ND ND ND 17.4 11/09/87 11947 ND 19.8 69 0.9 ND 2996 15 ND 12.4 17502 11.4 ND 1687 78.1 ND 19.5 ND ND ND ND ND ND ND 11/09/87 11957 ND 4.6 239 1 0.6 2442 20 10.8 13.4 18111 8.2 11.7 2627 342 ND 14.2 ND ND ND ND ND ND ND 11/09/87 11767 ND 8.6 131 0.7 ND 1073 9.7 ND 9.8 13542 14 ND 1317 340 ND 9.2 ND ND ND ND ND ND ND 11/09/87 11246 ND 9.0 18.4 1.2 0.6 2844 15.9 12.3 8.9 9590 9.7 ND 1448 579 ND 9.7 ND	,100220-4,6-1187	11/09/87	19028	ᄝ	25.5	81	6.0														•	-	
11/09/87 11947 ND 19.8 69 0.9 ND 2996 15 ND 12.4 17502 11.4 ND 1687 78.1 ND 19.5 ND 11/09/87 13859 ND 7.2 188 1 0.6 2642 20 10.8 13.4 18111 8.2 11.7 2627 342 ND 19.8 711 ND ND ND ND ND 11/09/87 11957 ND 4.6 239 1 0.6 2363 19.5 10 12.7 16776 8.5 8.5 2437 440 ND 14.2 ND ND ND ND ND ND ND ND 11/09/87 11767 ND 8.65 131 0.7 ND 1073 9.7 ND 9.8 13542 14 ND 1317 340 ND 9.2 ND	,100220-6,8-1187	11/09/87	13236	읒	25.7	99															•		
11/09/87 13859 ND 7.2 188 1 0.6 2642 20 10.8 13.4 18111 8.2 11.7 2627 342 ND 19.8 711 ND ND ND ND ND 11/09/87 11957 ND 4.6 239 1 0.6 2363 19.5 10 12.7 16776 8.5 8.5 2437 440 ND 14.2 ND ND ND ND ND ND 11/09/87 11767 ND 8.65 131 0.7 0.6 2364 15.9 ND 9.1 15198 8.7 ND 615 138 ND 5.6 ND	,100220-8,10-1187	11/09/87	11947	R	19.8	69	6.0						•										
11/09/87 11957 ND 4.6 239 1 0.6 2363 19.5 10 12.7 16776 8.5 8.5 2437 440 ND 14.2 ND ND ND ND ND ND 11/09/87 11767 ND 8.65 131 0.7 0.6 3350 15.9 ND 9.8 13542 14 ND 1317 340 ND 9.2 ND ND ND ND ND 11/09/87 11746 ND 9.01 84 1.2 0.6 2844 15.9 12.3 8.9 9690 9.7 ND 1448 579 ND 9.7 ND	0,100335-0,2-1187	11/09/87	13859	R	7.2	188	-																
11/09/87 11767 ND 8.65 131 0.7 0.6 3350 15.9 ND 9.8 13542 14 ND 1317 340 ND 9.2 ND ND ND ND ND ND ND 11/09/87 13243 ND 5.8 31 0.7 ND 1073 9.7 ND 9.1 5198 8.7 ND 615 138 ND 5.6 ND ND ND ND ND ND 11/09/87 11246 ND 9.01 84 1.2 0.6 2844 15.9 12.3 8.9 9690 9.7 ND 1448 579 ND 9.7 ND	0,100335-2,4-1187	11/09/87	11957	Q	4.6	239	-					•											
11/09/87 8343 ND 5.8 31 0.7 ND 1073 9.7 ND 9.1 5198 8.7 ND 615 138 ND 5.6 ND ND ND ND ND ND 11/09/87 11246 ND 9.01 84 1.2 0.6 2844 15.9 12.3 8.9 9690 9.7 ND 1448 579 ND 9.7 ND	3,100085-0,2-1187	11/09/87	11767	R	8.65	131	0.7	-															
11/09/87 11246 ND 9.01 84 1.2 0.6 2844 15.9 12.3 8.9 9690 9.7 ND 1448 579 ND 9.7 ND ND ND ND ND ND ND 11/09/87 13261 ND 13.4 48 1.3 0.6 1266 17.8 13 9.3 22249 11.7 ND 1015 283 ND 8.4 ND	,100085-2,4-1187	11/09/87	8343	욷	5.8	31	0.7																
11/09/87 13261 ND 13.4 48 1.3 0.6 1266 17.8 13 9.3 22249 11.7 ND 1015 283 ND 8.4 ND	,100085-4,6-1187	11/09/87	11246	R	9.01	₩	1.2																
11/09/87 11840 ND 11.53 39 0.7 ND ND 13.4 12.4 5.9 17159 8.6 ND 711 220 ND 5.8 ND ND ND ND ND ND	,100085-6,8-1187	11/09/87	13261	욷	13.4	48	1.3					•										-	
	,100085-8,10-1187	11/09/87	11840	물	11.53	33	0.7																

TABLE B-5

Material Staging Area IRA Soils Results - Anions

	.		Concentra	ation (UG/	G)
cocation	Date Sampled	Chloride	Flouride	Nitrate	Sulfate
50-51137,101068-0,2-1187	11/06/87	ND	2.79	0.85	15.31
50-51137,101068-10,12-1187	11/06/87	ND	9.49	2.43	17.89
50-51137,101068-2,4-1187	11/06/87	ND	7.92	0.79	82
50-51137,101068-4,6-1187	11/06/87	ND	6.34	1.27	46.92
50-51137,101068-6,8-1187	11/06/87	ND	8.11	1.33	38.49
50-51137,101068-8,10-1187	11/06/87	3.42	7.94	1.83	29.33
50-51150,101207-0,2-1187	11/06/87	ND	2.1	1.46	15.72
50-51150,101207-2,4-1187	11/06/87	ND	6.69	0.89	148.32
50-51150,101207-4,6-1187	11/06/87	5.13	5.13	0.89	90.26
50-51150,101207-6,8-1187	11/06/87	ND	7.97	1.57	24.83
50-51150,101207-8,10-1187	11/06/87	ND	8.83	1.39	17.65
50-51360,101175-0,2-1187	11/06/87	ND	3.42	0.94	97.85
50-51360,101175-2,4-1187	11/06/87	ND	8.56	0.79	78.29
50-51360,101175-4,6-1187	11/06/87	ND	4.96	0.69	79.35
50-51360,101175-6,8-1187	11/06/87	5.43	4.72	1.18	52.31
50-51360,101175-8,10-1187	11/06/87	ND	5.45	1.95	43.51
50-51445,101065-0,2-1187	11/06/87	ND	4.68	2.22	18.5
50-51445,101065-10,12-1187	11/06/87	1.25	4.53	ND	8.39
80-51445,101065-2,4-1187	11/06/87	5.04	12.65	1.68	124.26
50-51445,101065-4,6-1187	11/06/87	5.7	9.72	1.45	144.05
50-51445,101065-6,8-1187	11/06/87	5.51	6.72	1.32	52.88
50-51445,101065-8,10-1187	11/06/87	4.21	6.72	1.82	9.34
80-51500,101190-0,2-1187	11/06/87	2.04	ND	42.18	1.32
50-51500,101190-10,12-1187	11/06/87	1.17	5.16	ND	11.37
30-51500,101190-12,14-1187	11/06/87	1.27	5.54	ND	22.17
50-51500,101190-2,4-1187	11/06/87	4.36	6.94	1.79	53.59
50-51500,101190-4,6-1187	11/06/87	7.40	5.55	1.63	164.24
50-51500,101190-6,8-1187	11/06/87	5.59	3.46	1.56	33.96
50-51500,101190-8,10-1187	11/06/87	1.43	2.51	ND	26.31

Material Staging Area IRA Soils Results - Metals

	>	46.8 33.2 33.2 33.2 23.4 44.4 44.4 44.4 46.8 46.8 47.4 42.4 47.4 42.4 40.3 39.9 34.4 40.3 39.9 39.9 39.9 34.8 41.6 21.4 42.4 42.4 42.4 42.4 42.4 43.6 38.5 38.5 38.5 38.5 38.5 38.5 38.5 38.5
		N N N N N N N N N N N N N N N N N N N
1	Na Tl	
	Pg J	2.6 2.4 ND ND ND ND ND ND ND ND ND ND
	Se	6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	×	1670 821 1064 ND 724 947 11062 11288 ND ND 630 11398 1147 ND ND 1030 759 1410 11099 603 603 6136 11410 11099 11099 11099 11099
	N.	23.6 14.9 23.4 12.8 12.8 12.8 20.2 27.6 14.3 18.1 11 11 11 12 13 13 13 15 16 17 16 17 18 17 18 19 10 10 14 16 17 18 18 19 19 19 19 19 19 19 19 19 19
	Hg	
	吾	648 1) 107 107 1 402 109 366 45.2 505 653 583 1522 379 643 643 643 643 643 684 901 68.9 68.9 68.9 68.9 68.9 68.9 68.9 68.9
	Æg	389 953 658 893 1161 1102 2273 3337 1877 2053 3337 1877 11291 1291 1291 1905 19484 137 187 187 187 187 187 187 187 187 187 18
	Li .	NN NN 10.9 33 9.8 2 9.8 2 11.2 2 10.8 11 10.8 8.9 10.4 11.3 11.1 11.3 11.1 11.3 11.1 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.4 11.6 11.6 11.6 11.6 11.6 11.6 11.6
NO	. !	33.5 10 28.3 1 19.6 4.1 23.3 23.1 24.3 23.1 24.3 117.2 17.2 33.7 17.2 29.8 25.4 26.7 14.4 6.1 17.1 14.4 18.6 19.8 19.8 18.7 19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8
NOTION (116/G) LOCATION		25634 3 16587 2 14964 1 14179 1 17925 2 1443 2 24443 2 22869 2 22869 2 22327 2 12629 1 15728 2 1572 2 1578 1 19285 1 19385 1 1
0/011	Fe	24 25 25 13.5 166 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
NOTER	3	14.2 24 8.2 13 9 9 6 14.1 17.9 11 12. 27.1 12 14.1 22 14.2 27.1 11 19.9 9 19.9 9 11.2 6.2 11 11.2 6.3 11 11.2 6.3 11 11.2 6.3 11 11.2 6.3 11 11.2 6.3 11 11.2 6.3 11 11.3 11 11.5 11 1
O THE OWNER OF THE OWNER O	S	14.19 11
18	3 5	(1) (1) (4) (4) (4)
	5	
	5	11.2 NND 11.3 00.8 00.7 ND 00.9 00.7 ND 00.9 00.7 00.9 00.7 00.7 00.9
	Š	1.2 1.2 1.2 0.9 0.0 1.1 1.3 1.3 1.3 1.3 0.9 0.9 0.9 0.9 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1
	á	2223 1 128 1 128 1 132 (147 136) 2 147 1 136
		7 7 7.8 8.18 8.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.
		20301 13703 10628 10744 16872 15607 16688 13415 7839 15277 15031 20160 13833 8777 15031 15031 1573 10521 11784 11546 8669 9315 15103 11145 11182
	DATE	11/06/87 11/06/87
		S0-51137, 101068-0, 2-1187 S0-51137, 101068-10, 12-1187 S0-51137, 101068-2, 4-1187 S0-51137, 101068-4, 6-1187 S0-51137, 101068-4, 6-1187 S0-51137, 101068-8, 10-1187 S0-51150, 101207-2, 4-1187 S0-51150, 101207-4, 6-1187 S0-51150, 101207-4, 6-1187 S0-51150, 101107-4, 6-1187 S0-51360, 101175-2, 4-1187 S0-51360, 101175-2, 4-1187 S0-51360, 101175-4, 10-1187 S0-51360, 101175-8, 10-1187 S0-51445, 101065-0, 2-1187 S0-51445, 101065-2, 4-1187 S0-51500, 101190-0, 2-1187 S0-51500, 101190-10, 12-1187 S0-51500, 101190-12, 14-1187 S0-51500, 101190-12, 14-1187 S0-51500, 101190-16, 16-1187 S0-51500, 101190-16, 16-1187 S0-51500, 101190-16, 16-1187 S0-51500, 101190-16, 16-1187

TABLE B-7

SOUTH EAST ISOLATION DIKE IRA SOILS RESULTS - ANIONS

LOCATION	DATE		CONCENTRA	TION (UG	(G)
LOCATION	DATE Sampled	CHLORIDE	FLOURIDE	NITRATE	SULFATE
SO-50140,98820-0,2-1187	11/10/87	4.64	13.98	1.68	61.51
SO-50140,98820-2,4-1187	11/10/87	4.85	17.75	2.05	51.2
SO-50140,98820-4,6-1187	11/10/87	4.55	18.91	1.86	22.39
SO-50140,98820-6,8-1187	11/10/87	5.69	14.82	1.8	20.3
SO-50160,98735-0,2-1187	11/10/87	2.86	4.47	1.74	93.3
SO-50160,98735-10,12-1187	11/10/87	4.36	1.33	1.44	20.9
SO-50160,98735-2,4-1187	11/10/87	3.52	3.34	1.44	23.1
SO-50160,98735-4,6-1187	11/10/87	1.33	ND	24.5	ND
SO-50160,98735-6,8-1187	11/10/87	1.19	1.29	0.63	32.5
SO-50160,98735-8,10-1187	11/10/87	0.945	1.84	0.73	26.1
SO-50230,98991-0,2-1187	11/10/87	5.36	5.14	3.15	13.82
SO-50230,98991-2,4-1187	11/10/87	3.33	13.42	1.56	113.97
SO-50230,98991-4,6-1187	11/10/87	3.57	12.67	1.89	26.74
SO-50230,98991-6,8-1187	11/10/87	3	12.24	2.4	20.56
SO-50252,98800-0,2-1187	11/10/87	3.74	9.51	3.03	26.89
SO-50252,98800-2,4-1187	11/10/87	4.27	1.51	2.71	68.49
SO-50252,98800-4,6-1187	11/10/87	2.62	1.67	1.4	93.04
SO-50252,98800-6,8-1187	11/10/87	5.92	4.59	2.21	15.45
SO-50290,98700-0,2-1187	11/09/87	4.77	5.85	1.99	87.23
SO-50290,98700-2,4-1187	11/09/87	4.6	6.67	2.25	514.76
SO-50290,98700-4,6-1187	11/09/87	4.82	8.38	1.65	263.77
SO-50290,98700-6,8-1187	11/09/87	5.19	7.81	6.71	11297

TABLE B-8

SOUTH EAST ISOLATION DIKE IRA SOILS RESULTS - METALS

LOCATION SAMPLED																	כסווכניו	Joincellus autoli	0 /00 1	,		
	Al	Sp	As	Ba	Be	3	Ca	Cr.	8	Ca	Fe	£.	Li	p y	돺	恩	Ņ	×	sz	Åg	Ŋa	I
1/10/01/	0330	9	7 9	 	,	-	16097	17.8	- 2	9	10384	¤	ı	11575	304	Ę	10 %	Ę	Ę	2 1	Ę	Ę
	14568	2 5	יי	28 9	3 -		3816	23.2	. «	17.2	23129	11.7		2622	107	2	25.8	2	2	2	足	R
	8168	2	ر س س	314	1.7	6.0	3179	12.3	23.6	14.9	12496	13.2	2	1897	1218	2	39.3	2	2	2	R	R
11/10/87	10762	2	4.3	139	2.9	0.8	3383	20.5	7.8	23	20415	6.4		2187	455	2	36.9	2	욷	윤	R	R
11/10/87	10702	R	5.8	142	6.0	1:1	86998	19.7	12	76	17113	24.4		3251	8590	2	15.8	욷	R	1.3	물	R
11/10/87	10590	R	6.7	32	6.0	2	3153	19.2	6.4	13.1	16781	13.9		1425	163	2	12.3	욷	웆	2	문	R
11/10/87	6765	7.4	6.2	186		6.0	3788	20.5	18.9	8.9	23558	27.1		1950	3126	2	13.7	2	足	1.4	문	문
11/10/87	9052	R	7.5	129	8.0	8.0	1734	19.7	23.3	17	15067	22.8		1786	2026	2	16.5	2	R	R	R	문
11/10/87	6951	R		108	0.7	R	823	15	7.8	21	10602	11.5		770	295	2	10.1	2	R	足	R	R
	8105	7.8	7.2	366		0.9	1300	26.2	25.7	7.5	22596	25.1		3251	딡	13	2	2	1.6	R	웆	62.4
11/10/87	20315	ᄝ		168	1.2	_	2156	24.3	9.9	20.5	24543	9.3		2075	292	2	19.7	912	R	R	물	물
11/10/87	13120			262	6.0	0.7	2140	21.1	8.2	35.1	17841	8.6		2650	555	2	19.1	619	R	쥪	R	욷
11/10/87	10245	R		171.2	8.0	2	1900	16.4	5.9	19.6	12902	8.1		1872	259	2	10.6	2	2	2	R	R
11/10/87	12409	2		202	6.0	9.0	2727	16.4	10.2	76	15179	22.3		1884	470	2	8.6	足	2	욷	R	물
11/10/87	9191	2		159	6.0	R	6513	17.3	13.9	11.3	16542	21.1		1973	834	욷	16.2	욷	R	2	문	ᄝ
11/10/87	7166	문	4.5	121	8.0	2	1342	14.1	10.4	5.9	12996	18.6		305	626	2	6.7	R	Z	2	물	2
11/10/87	8037	R	6.4	101	6.0	9.0	2423	19.1	잁	10.6	19895	12		1492	117	2	8.6	2	R	오	R	2
11/10/87	16496	R	7.6	88	8.0	2	3210	13.5	21	11.5	16085	20		15.4	396	2	15.6	욷	R	R	ę	R
11/09/87	12552	R	5.4	139	6.0	문	6425	15.5	10.8	10.2	14305	16.6		2132	533	욷	12.4	2	Q	웆	R	R
11/09/87	9293	2	6.3	183.6	6.0	6.0	18518	18	9.6	14.3	15893	16.7		5114	455	2	16.4	9	웊	1.1	ᄝ	旲
11/09/87	9988	R	7.2	98.9	1.2	9.0	4158	14.5	6	14	18989	20.5		2088	426	2	52	R	R	R	웆	2
11/09/87	10355	2	8.96	96.7	_	R	5508	15.5	9.3	10.9	14272	8.2		2124	240	2	18.2	문	R	2	문	2

TABLE B-9
CONSTRUCTION STAGING AREA IRA SOILS RESULTS - ANIONS

			CONCENTRATIO	N (UG/G)	
LOCATION	DATE	CHLORIDE	FLOURIDE	NITRATE	SULFATE
50-50800,98150-0,7-0288	02/09/88	15	10	1.5	75
80-50800,98150-8,15-0288	02/09/88	10	15	10	10
80-50950,98300-0,7-0288	02/09/88	30	10	5	75
80-50950,98300-8,15-0288	02/09/88	10	10	2.0	10

TABLE B-10 CONSTRUCTION STAGING ARRA IRA SOILS RESULTS - METALS

	DATE										8	CONCENTRATION (uq/L)) NOIL	nd/F)										
LOCATION	SAMPLED	A.	Al Sb As Ba	As	Ba	-	g	Ca	r 5	ප	Çn	Fe	P.	Li	Mg	th I	fl fi	li .	se Cd Ca Cr Co Cu Fe Pb Li Mig Min Hig Ni K Se Ang Na Tl V	Åg	Na	TI.	>	Zn
80-50800, 98150-0, 7-0288	02/09/88 8715 ND 14.0 125	8715	물	14.0	125	0.80	~ 2	3750	12.9	10.5	8.45 1	2880 1	4.3	N 15	181 7.	02	⊕ 13.	2 42	ND 3750 12.9 10.5 8.45 12880 14.3 ND 1981 720 ND 13.2 427 2.93 ND 121 ND 24.6 26.6	2	121	N S	34.6	9.92
80-50950,98300-0,7-0288	02/09/88 10010	10010		12.71	ND 12.71 141 0.79		0.65	2210	15.6	5.97	0.65 2210 15.6 5.97 11.8 16160 11.1 ND 2040	6160 1	1.1)Z	140 2.	61	Æ 12.	0 88	219 ND 12.0 385 1.09 ND 335 ND 29.2 28.1	용	335	E E	29.2	28.1

APPENDIX C ANALYTICAL DETECTION LIMITS

		DETECTION	
ANALYTICAL PARAMETER	UNITS	LIMITS	CATEGORY
Alaminum	ug/g	20	Metals
Aluminum	ug/g ug/g	6	Metals
Antimony	ug/g ug/g	i	Metals
Arsenic Barium	ug/g	20	Metals
	ug/g	0.5	Metals
Beryllium	ug/g	0.5	Metals
Cadmium Calcium	ug/g	500	Metals
Chromium	ug/g	1	Metals
Cobalt	ug/g	5	Metals
	ug/g	2.5	Metals
Copper Iron	ug/g	10	Metals
Lead	ug/g	0.5	Metals
Lead Lithium	ug/g	5	Metals
	ug/g	500	Metals
Magnesium	ug/g	1.5	Metals
Manganese	ug/g	0.1	Metals
Mercury Nickel	ug/g	4	Metals
Potassium	ug/g	500	Metals
	ug/g	0.5	Metals
Selenium	ug/g	1	Metals
Silver	ug/g	500	Metals
Sodium	ug/g ug/g	1	Metals
Thallium	ug/g ug/g	5	Metals
Vanadium Zinc	ug/g ug/g	2	Metals
ZINC	46/6		_
Nitrate	ug/g	0.5	Ions
Sulfate	ug/g	1	Ions
Chloride	ug/g	1.25	Ions
Fluoride	ug/g	1.25	Ions
2,4,6-TNT	ug/g	1.2	Nitroaromatics
2,4 DNT	ug/g	0.75	Nitroaromatics
2,6 DNT	ug/g	1.41	Nitroaromatics
Nitrobenzene	ug/g	1.44	Nitroaromatics
1,3,5-Trinitrobenzene	ug/g	0.57	Nitroaromatics
1,3-Dinitrobenzene	ug/g	0.9	Nitroaromatics
Percent Moisture	prent	_	Misc.
pH	units	-	Misc.
Pheno1	ug/kg	330	Semi-volatiles
bis(2-Chlorethyl) ether	ug/kg	330	Semi-volatiles
2-Chlorophenol	ug/kg	330	Semi-volatiles
1,3-Dichlorobenzene	ug/kg	330	Semi-volatiles
1,4-Dichlorobenzene	ug/kg	330	Semi-volatiles
Benzyl Alcohol	ug/kg	330	Semi-volatiles
1,2-Dichlorobenzene	ug/kg	330	Semi-volatiles
	ug/kg ug/kg	330	Semi-volatiles
2-Methylphenol bis(2-Chloroisopropyl) ether		330	Semi-volatiles
	ug/kg	330	Semi-volatiles
4-Methylphenol	~6/ * 6		

ANALYTICAL PARAMETER	UNITS	DETECTION LIMITS	CATEGORY
		222	
N-Nitro-Dipropylamine	ug/kg	330	Semi-volatiles
Hexachloroethane	ug/kg	330	Semi-volatiles
Nitrobenzene	ug/kg	330	Semi-volatiles
Isophorone	ug/kg	330	Semi-volatiles
2-Nitrophenol	ug/kg	1600	Semi-volatiles
2,4-Dimethyphenol	ug/kg	330	Semi-volatiles
Benzoic Acid	ug/kg	1600	Semi-volatiles
bis(2-Chloroethoxy) methane	ug/kg	330	Semi-volatiles
2,4-Dichlorophenol	ug/kg	330	Semi-volatiles
1,2,4-trichlorobenzene	ug/kg	330	Semi-volatiles
Naphthalene	ug/kg	330	Semi-volatiles
4-Chloroaniline	ug/kg	330	Semi-volatiles
Hexachlorobutadiene	ug/kg	330	Semi-volatiles
4-Chloro-3-methylphenol	ug/kg	330	Semi-volatiles
2-Methylnaphthalene	ug/kg	330	Semi-volatiles
Hexachlorocyclopentadiene	ug/kg	330	Semi-volatiles
2,4,6-Trichlorophenol	ug/kg	330	Semi-volatiles
2,4,5-Trichlorophenol	ug/kg	1600	Semi-volatiles
2-Chloronaphthalene	ug/kg	330	Semi-volatiles
2-Nitroaniline	ug/kg	1600	Semi-volatiles
Dimethyl Phthalate	ug/kg	330	Semi-volatiles
Acenaphthylene	ug/kg	330	Semi-volatiles
2,6-Dinitrotoluene	ug/kg	330	Semi-volatiles
3-Nitroaniline	ug/kg	1600	Semi-volatiles
Acenaphthene	ug/kg	330	Semi-volatiles
2,4-Dinitrophenol	ug/kg	1600	Semi-volatiles
4-Nitrophenol	ug/kg	1600	Semi-volatiles
Dibenzofuran	ug/kg	330	Semi-volatiles
2,4-Dinitrotoluene	ug/kg	330	Semi-volatiles
Diethylphthalate	ug/kg	330	Semi-volatiles
4-Chlorophenyl Phenyl Ether	ug/kg	330	Semi-volatiles
Fluorene	ug/kg	330	Semi-volatiles
4-Nitroaniline	ug/kg	1600	Semi-volatiles
4,6-Dinitro-2-methylphenol	ug/kg	1600	Semi-volatiles
N-nitrosodiphenylamine	ug/kg	330	Semi-volatiles
4-Bromophenyl Phenyl Ether	ug/kg	330	Semi-volatiles
Hexachlorobenzene	ug/kg	330	Semi-volatiles
Pentachlorophenol	ug/kg	1600	Semi-volatiles
Phenanthrene	ug/kg	330	Semi-volatiles
Anthracene	ug/kg	330	Semi-volatiles
Di-n-butylphthalate	ug/kg	330	Semi-volatiles
Fluoranthene	ug/kg	330	Semi-volatiles
Pyrene	ug/kg	330	Semi-volatiles
Butyl Benzyl Phthalate	ug/kg	330	Semi-volatiles
3,3'-Dichlorobenzidine	ug/kg	660	Semi-volatiles
Benzo(a)anthracene	ug/kg	330	Semi-volatiles
Chrysene	ug/kg	330	Semi-volatiles
bis(2-ethylhexyl)phthalate	ug/kg	330	Semi-volatiles
Di-n-octyl Phthalate	ug/kg	330	Semi-volatiles
Benzo(b)fluoranthene	ug/kg	330	Semi-volatiles

		DETECTION	
ANALYTICAL PARAMETER	UNITS	LIMITS	CATEGORY
Benzo(k)fluoranthene	ug/kg	330	Semi-volatiles
Benzo(a)pyrene	ug/kg	330	Semi-volatiles
Indeno(1,2,3-cd)pyrene	ug/kg	330	Semi-volatiles
Dibenzo(a,h)anthracene	ug/kg	330	Semi-volatiles
Benzo(g,h,i)perylene	ug/kg	330	Semi-volatiles
alpha-BHC	ug/kg	8	Pesticide/PCBs
beta-BHC	ug/kg	8	${\tt Pesticide/PCBs}$
delta-BHC	ug/kg	8	Pesticide/PCBs
gamma-BHC (Lindance)	ug/kg	8	${ t Pesticide/PCBs}$
Heptachlor	ug/kg	8	${ t Pesticide/PCBs}$
Aldrin	ug/kg	8	Pesticide/PCBs
Heptachlor Epoxide	ug/kg	8	${ t Pesticide/PCBs}$
Endosulfan I	ug/kg	8	Pesticide/PCBs
Dieldrin	ug/kg	16	Pesticide/PCBs
4,4'-DOE	ug/kg	16	Pesticide/PCBs
Endrin	ug/kg	16	${ t Pesticide/PCBs}$
Endosulfan II	ug/kg	16	Pesticide/PCBs
4,4'-DOD	ug/kg	16	${ t Pesticide/PCBs}$
Endosulfan Sulfate	ug/kg	16	Pesticide/PCBs
4,4'-DOT	ug/kg	16	Pesticide/PCBs
Endrin Ketone	ug/kg	16	Pesticide/PCBs
Methxychlor	ug/kg	80	Pesticide/PCBs
alpha-chlordane	ug/kg	80	Pesticide/PCBs
gamma-chlordane	ug/kg	80	Pesticide/PCBs
Toxaphene	ug/kg	160	Pesticide/PCBs
Aroclor-1016	ug/kg	80	Pesticide/PCBs
Aroclor-1221	ug/kg	80	Pesticide/PCBs
Aroclor-1232	ug/kg	80	Pesticide/PCBs
Aroclor-1242	ug/kg	80	Pesticide/PCBs
Aroclor-1248	ug/kg	80	Pesticide/PCBs
Aroclor-1254	ug/kg	160	Pesticide/PCBs
Aroclor-1260	ug/kg	160	Pesticide/PCBs

APPENDIX D
ANALYTICAL QUALITY CONTROL DATA SUMMARY

WELDON SPRING SITE REMEMDIAL ACTION PROJECT

Quality Control Report

CLIE	ENT: MK Ferguson	
PROJ SAMP	ECT #'s: 100-02 And 100-03 OLE #'s: AA05276 - AA05649 (All Soil Sumples)	
	GC/MS ANALYSIS CONFORMANCE SUMMARY	
1)	GC/MS TUNE SPECIFICATIONS	Ø
	a) BFB PASSED b) DFTPP PASSED	
2)	GC/MS TUNING FREQUENCY - PERFORMED PER METHOD EPA CLP	
3)	GC/MS CALIBRATION - INITIAL CALIBRATION CURVE OR CALIBRATION CHECK STANDARD RUN PER METHOD FOR - CLP	\bowtie
4)	GC/MS CALIBRATION REQUIREMENTS MET	\boxtimes
	a) CALIBRATION CHECK COMPOUNDSb) SYSTEM PERFORMANCE CHECK COMPOUNDS	
5)	a) VOA FRACTION metylene chloride 2.5 ug/l b) B/N FRACTION no contaminates c) A/E FRACTION no contaminates	
6)	SURROGATE RECOVERIES MEET CRITERIA (IF NOT MET, REFER TO INDIVIDUAL SURROGATE RECOVERY FORMS FOR ACTUAL RECOVERIES)	\bowtie
	a) VOA FRACTION All Surrogates within limits b) B/N FRACTION AA05276(2), AA5307(2), AA05553(2), AA056 c) A/E FRACTION AA05276(2), AA5307(2), AA05553(1), AA056	46(2) 46(2)
7)	SPIKED BLANK WITHIN CONTROL LIMITS Not Applicable	
8)	All Lines were met	X
9)	MINIMUM DETECTION LIMITS ON ALL FRACTIONS AT OR BELOW METHOD SPECIFICATIONS. (IF NOT CHECKED REFER TO INDIVIDUAL ANALYSIS REPORTS FOR THE ACTUAL MDL'S)	M
10	OTHERWISE DENOTED BELOW.	
ADI	DITIONAL COMMENTS:	-
	Richard Manny PROJECT MANAGER	- - -

CLIE PROJ	ENT: MK Ferguson JECT #'s: 100-02 and 100-03 (All soil samples)	
SAME	PLE #'s: AA05271 - AA05649	
	GC/HPLC ANALYSIS CONFORMANCE SUMMARY	
1)	GC/HPLC CALIBRATION - INITIAL CALIBRATION CURVE OR CALIBRATION CHECK STANDARD RUN PER METHOD GC - EPA CLP HPLC - USAT	AMA
2)	BLANK CONTAMINATION - COMPOUNDS LISTED	
	a) GC no conteminates	
	b) HPLC no contaminates	
3)	SPIKED BLANK WITHIN CONTROL LIMITS	X
4)	SAMPLE HOLDING TIMES MET All holding times met	M.
5)	MINIMUM DETECTION LIMITS ON GC/HPLC METHODS AT OR BELOW METHOD SPECIFICATIONS	X
6)	ALL SAMPLES CONFORM TOEPA - CLP QA/QC CRITERIA UNLESS OTHERWISE DENOTED BELOW	X
ADD	OITIONAL COMMENTS:	
	PROJECT MANAGER	

CLIENT: MX Ferouson PROJECT #'S: 100-03 100-03 SAMPLE #'S: AA 05271 - AA 0 5649 (Soil) METALS/INORGANIC ANALYSIS CONFORMANCE SUMMARY	= = - ■
1) INITIAL CALIBRATION CURVE OR CALIBRATION CHECK STANDARD RUN PER METHOD FR - CLP	
2) BLANK CONTAMINATION - COMPOUNDS LISTED	
Contamina CC3	M
b) INORGANIC No SOURCE 3) SPIKED BLANK (LABORATORY CONTROL SAMPLE) WITHIN CONTROL LIMITS 4) SAMPLE HOLDING TIMES MET All holding times met	M
	\square
5) MINIMUM DETECTION BITTLE FOR CLP METHOD SPECIFICATIONS FOR TO FOR QA/QC CRITERIA UNLESS 6) ALL SAMPLES CONFORM TO FOR BELOW	M
OTHERWISE DENOTED	
ADDITIONAL COMMENTS:	
PROJECT MANAGER	-

CLI	ENT:	MK	Ferguson	
PRO SAM	JECT #' PLE #'s	's: :-	100-02 100-03 AAO 6554 - 7053 Soils 4-238	
			RADIOCHEMICAL ANALYSIS CONFORMANCE SUMMARY	-
1)	GAS P	ROPC	ORTIONAL COUNTER	
		a)	BACKGROUND ACCEPTABLE ALPHA	
		b)	BACKGROUND ACCEPTABLE BETA	
		c)	PERFORMANCE CHECK ACCEPTABLE ALPHA	
		d)	PERFORMANCE CHECK ACCEPTABLE BETA	
2)	ALPHA	SPE	ECTROMETER	
		a)	BACKGROUND ACCEPTABLE	\square
		b)	CALIBRATION (KeV/CHANNEL) VERIFICATION	\boxtimes
3)	ALPHA	SCI	INTILLATION COUNTER	
		a)	BACKGROUND ACCEPTABLE	
		b)	PERFORMANCE CHECK ACCEPTABLE	
4)	METHO	D SI	PECIFIC PARAMETERS	
		a)	BLANK IN CONTROL	\boxtimes
		b)	SPIKED BLANK IN CONTROL	M
		c)	RPD FOR DUPLICATES IN CONTROL	区
ADE	OITIONA	L C	OMMENTS:	_
<u></u>			$\mathbb{Q} \cdot \mathbb{Q} \setminus \mathbb{Q}$	
			PROJECT MANAGER	

WSSRAP SOIL SPIKES MATRIX: SOIL UNITS: UG/6

SAMPLE NO: AA05283

SITE ID: S0-51360-101175-2,4-1187

	SAMPLE CONC	ADDED AMOUNT	SPIKE	PERCENT RECOVERY
NITRATE	0.7	2.14	1.5	84
CHLORIDE	<1.25	2.07	180	87
FLUORIDE	7.6	3.52	9.88	93
SULFATE	69.5	15.9	85.4	103

SAMPLE NO: AA05292

SITE ID: S0-51445-101065-10,12-1187

	SAMPLE CONC	ADDED AMOUNT	SPIKE	PERCENT RECOVERY
NITRATE	<0.5	2.5	2.36	94
CHLORIDE	1.1	2.25	3.32	102
FLUORIDE	4	2.75	6.8	98
SULFATE	7.4	3.5	10.89	115

SAMPLE NO: AA05637

SITE ID: S0-49160-100500-0,2-1187

	SAMPLE CONC	ADDED AMOUNT	SPIKE	PERCENT RECOVERY
NITRATE	1.3	2	3.21	91
CHLORIDE	3.1	2	5.04	84
FLUORIDE	8.8	3.75	12.59	103
SULFATE	40.5	10	50.5	100

■ 13715 Rider Trail North

SAMPLE NO: AA05335

SITE ID: S0-50230-98991-4,6-1187 (MS)

	SAMPLE CONC	ADDED AMOUNT	SPIKE	PERCENT RECOVERY
NITRATE	11.5	10	21.6	101
CHLORIDE	13.4	10	23.5	101
FLUORIDE	22.4	20	43.6	106
SULFATE	28.5	20	48.1	98

SAMPLE NO: AA05301

SITE ID: S0-51308-100085-2,4-1187

	SAMPLE CONC	ADDED AMOUNT	SPIKE	PERCENT RECOVERY
NITRATE	0.75	10	10.15	94
CHLORIDE	1.31	10	9.41	81
FLUORIDE	<1.25	10	9.4	94
SULFATE	49.4	25	74.4	100

WSSRAP SOIL SPIKES MATRIX: SOIL UNITS: UG/6

SAMPLE NO: AA05610

SITE ID: S0-49080-100295-0,2-1187

	SAMPLE CONC	ADDED AMOUNT	SPIKE	PERCENT RECOVERY
NITOATE	2 2	2.5	4.99	115
NITRATE CHLORIDE	2.2 2.8	4.55	7.35	117
FLUORIDE	5.1	3	8.2	104
SULFATE	22	8	31.9	95

SAMPLE NO: AA05300

SITE ID: S0-51308-100085-0,2-1187

	SAMPLE CONC	ADDED AMOUNT	SPIKE	PERCENT RECOVERY
NITRATE	3.82	10	12.3	89
CHLORIDE	4.78	15	9.3	92
FLUORIDE	3.76	10	13.1	9 5
SULFATE	15.4	10	23.4	88

SAMPLE NO: AA05328

SITE ID: S0-50140-98820-2,4-1187 (MS)

	SAMPLE CONC	ADDED AMOUNT	SPIKE	PERCENT RECOVERY
NITRATE	10.8	10	20.18	93.8
CHLORIDE	11.9	10	20.1	82
FLUORIDE	21.6	20	39.9	91.5
SULFATE	31.6	25	52.6	84

WSSRAP PROJECT NO: 100-03 SOIL DUPLICATES MATRIX: SOIL UNITS: UG/G

SAMPLE NO: AA05280

SITE ID: S0-51137-101068-8,10-1187

	NITRATE	FLUORIDE	CHLORIDE	SULFATE	
RESULT #1	1.83	7.94	3.42	29.33	
RESULT #2	1.4	6.5	2.5	26.0	
SAMPLE NO: AAO SITE ID: SO-51	15294 500-101190-2,4-1	187			
	NITRATE	FLUORIDE	CHLORIDE	SULFATE	
RESULT #1	1.79	6.94	4.36	53.59	
RESULT #2	2.3	5.2	5.9	59.2	
SAMPLE NO: AAO SITE ID: SO-49	95613 1080-100295-6,8-1	187			
	NITRATE	FLUORIDE	CHLGRIDE	SULFATE	
RESULT #1	1.67	21.40	1.20	4.30	
RESULT #2	1.4	18.7	0.7	3.7	
SAMPLE NO: AAO5623 SITE ID: SO-49101-100500-0,2-1187					
	NITRATE	FLUORIDE	CHLORIDE	SULFATE	
RESULT #1	3.58	9.53	1.3	34.24	

RESULT #2 3.5 8.8 1.2 34.1

SAMPLE NO: AA05633

SITE ID: S0-49000-100665-4,6-1187

	NITRATE	FLUORIDE	CHLORIDE	SULFATE
RESULT #1	1.43	15.65	2.63	136.20
RESULT #2	1.2	13.2	2.2	114
SAMPLE NO: AAC	95650 9082-100570-14,16	-1187		

	NITRATE	FLUORIDE	CHLORIDE	SULFATE
RESULT #1	2.47	6.95	0.94	13.66
RESULT #2	1.8	8.7	0.9	12.6

SAMPLE NO: AA05309

SITE ID: S0-51150-100220-8,10-1187

	NITRATE	FLUORIDE	CHLORIDE	SULFATE
RESULT #1	8.86	7.62	4.44	26.05
RESULT #2	6.29	6.66	0.94	18.9

SAMPLE NO: AA05556

SITE ID: S0-49000-100295-4,6-1187

	NITRATE	FLUORIDE	CHLORIDE	SULFATE
RESULT #1	1.40	12.10	19.39	27.73
RESULT #2	0.61	10.6	14.6	22.4

WSSRAP SOIL SPIKES MATRIX: SOIL UNITS: UG/6

SAMPLE NO: AA05278

SITE ID: S0-51137-101068-4,6-1187

	SAMPLE CONC	SPIKE CONC	SAMPLE+SPIKE	PERCENT RECOVERY
ALUMINUM		NA		
ANTIMONY	⟨6.0	10	⟨6.0	NC
ARSENIC	6.15	4	11.3	129
BARIUM	140	200	334	97
BERYLLIUM	0.71	5	5.95	104.8
CADMIUM	<0.5	5	4.96	99.2
CALCIUM		NA		
CHROMIUM	19	20	32.8	69
COBALT	7.82	50	56.6	97.6
COPPER	5.26	25	28.9	94.6
IRON		NA		
LEAD	⟨3.6	50	49.9	99.8
MAGNESIUM		NA		
MANGANESE	615	50	680	NC
MERCURY	<0.1	1	1.23	123
NICKEL	11.1	50	58.3	94.4
POTASSIUM		NA		***
SELENIUM	<0.5	1	<0.5	0
SILVER	<0.30	5	4.49	89.8
SODIUM		NA		
THALLIUM	<0.5	5	4.3	86
VANADIUM	28.8	50	74.9	92.2
ZINC	20.4	50	65	89.2
LITHIUM		NA		

SAMPLE NO: AA05327

SITE ID: S0-50140-98820-2,4-1187

	SAMPLE CONC	SPIKE CONC	SAMPLE+SPIKE	PERCENT RECOVERY
ALUMINUM		NA		
ANTIMONY	< 6. 0	10	16.3	163
ARSENIC	6.56	4	10.9	87
BARIUM	65555.3	200	467	201
BERYLLIUM	1.09	5	6.92	117
CADMIUM	0.6	5	6.24	113
CALCIUM		NA		
CHROMIUM	17	20	46.3	147
COBALT	6.2	50	76.6	141
COPPER	12.6	25	45.7	132
IRON		NA		
LEAD	8.61	50	73.4	130
MAGNESIUM		NA		
MANGANESE	77.8	50	257	358
MERCURY	<0.1	1	0.93	93
NICKEL	18.9	50	86.6	135
POTASSIUM		NA		
SELENIUM	<0.5	1	<0.5	0
SILVER	0.76	5	6.22	109
SODIUM		NA		
THALLIUM	<0.5	5	4.4	88
VANADIUM	28.5	50	111	165
ZINC	28.3	50	85.2	114
LITHIUM		NA		

SAMPLE NO: AAO5334

SITE ID: S0-50230-98991-4,6-1187

	SAMPLE CONC	SPIKE CONC	SAMPLE+SPIKE	PERCENT RECOVERY
ALUMINUM		NA		
ANTIMONY	<6	10	14	140
ARSENIC	5	4	9.02	101
BARIUM	146	200	355	104.5
BERYLLIUM	0.71	5	5.98	105.4
CADMIUM	<0.5	5	5.58	111.6
CALCIUM		NA		
CHROMIUM	14	20	36.8	114
COBALT	⟨5	50	54.9	109.8
COPPER	16.7	25	29.1	49.6
IRON		NA		
LEAD	6.93	50	53.2	92.5
MAGNESIUM		NA		
MANGANESE	221	50	397	NC
MERCURY	<0.1	1	0.76	76
NICKEL	9	50	55.8	93.4
POTASSIUM		NA		
SELENIUM	⟨0.5	1	<0.5	0
SILVER	0.37	5	4.91	98.2
SODIUM		NA		
THALLIUM	<0.5	5	4.2	84
MUIDANAV	24.8	50	80.9	112
ZINC	24.9	50	66.1	82.4
LITHIUM		NA		

SAMPLE NO: AA05566

SITE ID: S0-49475-99985-0,2-1187

	SAMPLE CONC	SPIKE CONC	SAMPLE+SPIKE	PERCENT RECOVERY
ALUMINUM		NA		
ANTIMONY	<6.0	10	15.12	151
ARSENIC	14.13	4	17.6	87
BARIUM	152	200	340	94
BERYLLIUM	0.98	5	6.23	105
CADMIUM	0.69	5	5.46	95.4
CALCIUM		NA		er er er
CHROMIUM	18	20	36.4	92
COBALT	10.3	50	56.2	91.8
COPPER	14.8	25	39.2	97.6
IRON		NA		
LEAD	14	50	65.5	103
MAGNESIUM		NA		
MANGANESE	636	50	638	NC
MERCURY	<0.2	1	1.12	112
NICKEL	15.6	50	60.7	90.2
POTASSIUM		NA		~ ~ ~ ~
SELENIUM	<0.5	1	<0.5	0
SILVER	<1.0	5	4.61	92.2
SODIUM		NA		
THALLIUM	0.5	5	5.4	108
VANADIUM	35.1	50	82.3	94.4
ZINC	42.5	50	87.9	90.8
LITHIUM		NA		

SAMPLE NO: AA05604

SITE ID: S0-49000-100500-0,2-1187

	SAMPLE CONC	SPIKE CONC	SAMPLE+SPIKE	PERCENT RECOVERY
ALUMINUM		NA		
ANTIMONY	<6	10	7.8	78
ARSENIC	8.9	4	12.6	93
BARIUM	221	200	402	90.5
BERYLLIUM	0.81	5	5.8	100
CADMIUM	1.34	5	6.18	96.8
CALCIUM		NA		
CHROMIUM	22.1	20	41.7	98
COBALT	10	50	57.4	94.8
COPPER	18.2	25	41.2	92
IRON		NA		
LEAD	10	50	59.1	98.2
MAGNESIUM	** ** **	NA		
MANGANESE	616	50	625	NC
MERCURY	<0.1	1	1.02	102
NICKEL	23.8	50	8.86	90
POTASSIUM		NA		
SELENIUM	<0.5	1	<0.5	0
SILVER	1.31	5	5.54	84.6
SODIUM		NA		
THALLIUM	<1.0	5	4.8	96
VANADIUM	37.5	50	80.4	85.8
ZINC	42.8	50	84.7	83.8
LITHIUM		NA		

SAMPLE NO: AA05620

SITE ID: S0-49132-100440-10,12,1187

	SAMPLE CONC	SPIKE CONC	SAMPLE+SPIKE	PERCENT RECOVERY
ALUMINUM		NA		
ANTIMONY	⟨6.0	50	52	104
ARSENIC	2.35	4	7.75	135
BARIUM	46.6	200	243	98
BERYLLIUM	0.86	5	4.75	78
CADMIUM	<0.50	5	4.2	84
CALCIUM		Nā		
CHROMIUM	11.6	20	32.7	106
COBALT	<5.0	50	47	94
COPPER	4.51	. 25	25.6	84
IRON		NA		
LEAD	<0.5	50	55	110
MAGNESIUM		NA		
MANGANESE	60.3	50	117	113
MERCURY	(0.1	1	1.01	101
NICKEL	7.42	50	48.7	82
POTASSIUM		₩A		
SELENIUM	<0.5	i	<0.5	0
SILVER	(0.3	5	3.76	<i>7</i> 5
SODIUM		NA		
THALLIUM	<1.0	5	5.5	110
VANADIUM	7.92	50	60.2	105
ZINC	16.1	50	65.2	98
LITHIUM		NA		

SAMPLE NO: AA05632

SITE ID: S0-49000-100665-2,4-1187

	SAMPLE CONC	SPIKE CONC	SAMPLE+SPIKE	PERCENT RECOVERY
ALUMINUM		NA		
ANTIMONY	<6	10	20.1	201
ARSENIC	8.15	4	11.19	76
BARIUM	121	200	347	113
BERYLLIUM	0.68	5	5.66	99.6
CADMIUM	<0.5	5	5.33	106.6
CALCIUM		NA		
CHROMIUM	19.9	20	35.5	78
COBALT	7.65	50	53.5	91.7
COPPER	7.3	25	29.2	87.6
IRON		NA		
LEAD	8.3	50	53.7	90.8
MAGNESIUM		NA		
MANGANESE	511	50	722	NC
MERCURY	(0.1	1	0.93	93
NICKEL	14.9	50	60.8	91.8
POTASSIUM		NA		
SELENIUM	<0.5	1	<0.5	Q.
SILVER	<1.0	5	4.79	95.8
SODIUM		NA		
THALLIUM	<0.5	5	4.7	94
VANADIUM	28.6	50	76.9	96.6
ZINC	26.9	50	67.5	81.2
LITHIUM		NA		

SAMPLE NO: AA05643

SITE ID: S0-49082-100570-0,2-1187

	SAMPLE CONC	SPIKE CONC	SAMPLE+SPIKE	PERCENT RECOVERY
ALUMINUM		NA		
ANTIMONY	<6.0	10	16.4	164
ARSENIC	14.6	4	16.7	NC
BARIUM	194	200	364	85
BERYLLIUM	0.7	5	6.02	106.4
CADMIUM	<0.5	5	5.46	109.2
CALCIUM		NA		
CHROMIUM	15	20	47.9	165
COBALT	7.11	50	54.9	95
COPPER	14	25	38.5	0.98
IRON		NA		
LEAD	5.57	50	56.1	101
MAGNESIUM		NA		
MANGANESE	405	50	390	NC
MERCURY	<0.1	1	0.75	75
NICKEL	15.6	50	67.5	103.8
POTASSIUM		NA		
SELENIUM	<0.5	1	<0.5	0
SILVER	<1.0	5	4.61	92.2
MUIDOS		NA		
THALLIUM	<0.5	5	3.6	72
VANADIUM	24.4	50	77.7	106.6
ZINC	36.3	50	86.9	100.6
LITHIUM		NA		

WSSRAP SOIL DUPLICATES MATRIX: SOIL UNITS: UG/KG

SAMPLE NO: AA05327

SITE ID: S0-50140-98820-2,4-1187

SAMPLE NO: AA05334

SITE ID: S0-50230-98991-4,6-1187

	RESULT #1	RESULT #2		RESULT #1	RESULT #2
ALUMINUM	14568	13350	ALUMINUH	10245	9430
ANTIMONY	ND	ND	ANT I MONY	ND	ND
ARSENIC	5	8.18	ARSENIC	5.9	4.29
BARIUH	88.7	80	BARIUM	171.2	216
BERYLLIUM	1.5	1.2	BERYLLIUM	0.8	0.71
CADMIUM	0.8	0.55	CADMIUM	ND	0.62
CALCIUM	3816	2725	CALCIUM	1900	1622
CHROMIUM	23.2	19.6	CHROMIUM	16.4	15.4
COBALT	8.5	7	COBALT	5.9	7.5
COPPER	17.2	13.4	COPPER	19.6	16.9
IRON	23129	17950	IRON	12902	12020
LEAD	11.7	8.8	LEAD	8.1	11.1
LITHIUM	D	ND	LITHIUM	7.6	7.14
MAGNESIUM	2622	2150	MAGNESIUM	1872	1600
MANGANESE	107	74.5	MANGANESE	259	586
MERCURY	ND	ND	MERCURY	ND	ND
NICKEL	25.8	20.1	NICKEL	10.6	15.1
POTASSIUM	ND	590	POTASSIUM	ND	ND
SELENIUM	ND	ND	SELENIUM	ND	ND
SILVER	ND	ND	SILVER	ND	ND
SODIUM	ND	ND	SODIUM	ND	ND
THALLIUM	ND	ND	THALLIUM	ND	ND
VANADIUM	38.9	33.5	VANADIUM	29.1	27.7
ZINC	38.6	38.1	ZINC	29.2	25.8

WSSRAP SOIL DUPLICATES MATRIX: SOIL UNITS: UG/KG

SAMPLE NO: AA05563

SITE ID: S0-49000-100180-2,4-1187

	RESULT #1	RESULT #2
ALUMINUM	30009	15030
ANTIMONY	ND	ND
ARSENIC	34	20.7
BARIUM	98	83
BERYLLIUM	1	0.69
CADMIUM	EN	ND
CALCIUM	4584	3400
CHROMIUM	31.8	17.1
COBALT	ND	ND
COPPER	10.8	5.8
IRON	24651	15560
LEAD	4.5	ND
LITHIUM	11.2	5.4
MAGNESIUM	3494	2160
MANGANESE	86.4	90.8
MERCURY	ND	ND
NICKEL	14.3	9.37
POTASSIUM	ND	ND
SELENIUM	D	ND
SILVER	ND	ND
SODIUM	ND	ND
THALLIUM	ND	ND
VANADIUM	49.8	35.4
ZINC	33.8	17.7

WSSRAP SOIL DUPLICATES MATRIX: SOIL UNITS: UG/KG

SAMPLE NO: AA05605

SITE ID: S0-49000-100500-2,4-1187

SAMPLE NO: AA05285

SITE ID: S0-51360-101175-6,8-1187

	RESULT #1	RESULT #2		RESULT #1	RESULT #2
ALUMINUM	10638	13740	ALUHINUM	15031	12400
ANTIMONY	ND	ND	ANTIMONY	ND	ND
ARSENIC	7.9	7.17	ARSENIC	6.7	4.89
BARIUM	195	123	BARIUM	136.9	127
BERYLLIUM	0.7	0.64	BERYLLIUM	0.8	0.84
CADMIUM	0.9	0.61	CADMIUM	0.7	0.51
CALCIUM	2113	1980	CALCIUM	1918	1545
CHROMIUM	17.9	21.8	CHROMIUM	20.8	21.9
COBALT	11.3	5.6	COBALT	19.9	18.1
COPPER	13.2	11.6	COPPER	9.8	8.6
IRON	14916	13820	IRON	15728	15620
LEAD	14.5	9.32	LEAD	14.4	14.7
LITHIUM	8.9	11.3	LITHIUM	12.3	9.1
MAGNESIUM	2101	2210	MAGNESIUM	1877	1550
MANGANESE	802	141	MANGANESE	643	755
MERCURY	ND	ND	MERCURY	ND	ND
NICKEL	12.5	12	NICKEL	10.4	11.2
POTASSIUM	ND	520	POTASSIUM	ND	575
SELENIUM	ND	ND	SELENIUN	ND	ND
SILVER	1.3	ND	SILVER	1.5	1.88
SODIUM	ND	ND	SODIUM	ND	ND
THALLIUM	ND	ND	THALLIUM	ND	ND
VANADIUM	33.9	34.9	VANADIUK	36.5	36.4
ZINC	27	28.4	ZINC	22.3	18.9

SAMPLE NO: AAO5622

SITE ID: S0-49132-100440-14,16,-1187

	RESULT #1	RESULT #2
ALUMINUM	12524	12560
ANTIMONY	ND	ND
ARSENIC	14.9	4.97
BARIUM	59.4	52.7
BERYLLIUM	1.2	0.63
CADMIUK	ND	ND
CALCIUM	3425	3240
CHROMIUM	17.5	15.3
COBALT	ND	ND
COPPER	10.9	10.2
IRON	20505	21700
LEAD	8.3	7.2
LITHIUM	D	DM
MAGNESIUM	1809	1725
MANGANESE	173	132
MERCURY	ND	ND
NICKEL	20.9	ND
POTASSIUM	ND	ND
SELENIUM	ND	ND
SILVER	ND	ND
SODIUM	ND	ND
THALLIUM	ND	ND
VANADIUM	38.3	33.6
ZINC	20.2	15.7

WSSRAP SOIL DUPLICATES MATRIX: SOIL UNITS: UG/KG

SAMPLE NO: AA05632

SITE ID: S0-49000-100665-2,4-1187

SAMPLE NO: AAO5644

SITE ID: S0-49082-100570-2,4-1187

	RESULT #1	RESULT #2		RESULT #1	RESULT #2
ALUMINUM	10528	9377	ALUMINUM	7401	10690
ANTIMONY	DM	ND	ANTIMONY	ND	ND
ARSENIC	9.2	7	ARSENIC	10	11.6
BARIUM	229	121	BARIUM	175	216
BERYLLIUM	0.8	0.68	BERYLLIUM	0.8	0.69
CADMIUM	ND	ND	CADMIUM	ND	0.60
CALCIUM	1611	1445	CALCIUM	1865	1690
CHRONIUM	17.2	19.9	CHROMIUM	16	25.1
COBALT	10.9	7.7	COBALT	7.9	8.78
COPPER	7.5	7.3	COPPER	36.5	15.0
IRON	13813	12780	IRON	13910	12850
LEAD	8.9	8.3	LEAD	7.7	4.9
LITHIUM	8.7	8.2	LITHIUM	מא	9.9
MAGNESIUM	2005	1790	MAGNESIUM	1830	2030
MANGANESE	610	511	MANGANESE	611	329
MERCURY	ND	ND	MERCURY	ND	ND
NICKEL	18.6	14.9	NICKEL	14.2	123
POTASSIUM	ND	ND	POTASSIUM	ND	ND
SELENIUM	ND	ND	SELENIUM	ND	ND
SILVER	ND	ND	SILVER	ND	ND
SODIUM	D	ND	SODIUM	ND	ND
THALLIUM	ND	ND	THALLIUM	ND	ND
VANADIUM	31	28.6	MUIGANAV	30	31
ZINC	28.3	26.9	ZINC	26.4	30.9

NITROAROMATICS - SOILS MS/MSD RESULTS PERCENT RECOVERY

SAMPLE # AA05328

SITE ID: SO-50140,98820

ANALYTE	MATRIX SPIKE	MATRIX SPIKE DUP
1,3,5-TNB	95	97
1,3-DNB	96	96
NITROBENZENE	99	101
2,4,6-TNT	84	84
2,6-DNT	84	87
2,4-DNT	70	72

SAMPLE # AA05335

SITE ID: SO-50230,98991

ANALYTE	MATRIX SPIKE	MATRIX SPIKE DUP
1,3,5-TNB	103	99
1,3-DNB	106	97
NITROBENZENE	118	103
2,4,6-TNT	92	89
2,6-DNT	96	87
2,4-DNT	80	74

SAMPLE # AA05339

SITE ID: S0-50160,98735

ANALYTE	MATRIX SPIKE	MATRIX SPIKE DUP
1,3,5-TNB	96	98
1,3-DNB	96	97
NITROBENZENE	101	99
2,4,6-TNT	86	82
2,6-DNT	86	84
2,4-DNT	72	72

SAMPLE # AA05342

SITE ID: S0-50160,98735

ANALYTE	MATRIX SPIKE	MATRIX SPIKE DUP
1,3,5-TNB	90	104
1,3-DNB	90	101
NITROBENZENE	97	107
2,4,6-TNT	69	89
2,6-DNT	80	90
2,4-DNT	68	77

SAMPLE # AAG5345

SITE ID: S0-50160,98735

ANALYTE	MATRIX SPIKE	MATRIX SPIKE DUP
1,3,5-TNB	98	97
1,3-DNB	95	96
NITROBENZENE	100	102
2,4,6-TNT	85	86
2,6-DNT	87	87
2,4-DNT	74	72

SAMPLE # AAO5348

SITE ID: SO-50160,98735

ANALYTE	MATRIX SPIKE	MATRIX SPIKE DUP
1,3,5-TNB	94	89
1,3-DNB	94	88
NITROBENZENE	101	94
2,4,6-TNT	82	79
2,6-DNT	84	84
2,4-DNT	70	66

SAMPLE # AA05615

SITE ID: S0-49132,100440

ANALYTE	MATRIX SPIKE	MATRIX SPIKE DUP
1,3,5-TNB	71	66
1,3-DNB	110	105
NITROBENZENE	95	97
2,4,6-TNT	51	56
2,6-DNT	87	87
2,4-DNT	116	112

SAMPLE # AA05623

SITE ID: S0-49101,100500

ANALYTE	MATRIX SPIKE	MATRIX SPIKE DUP
1,3,5-TNB	85	85
1,3-DNB	100	101
NITROBENZENE	94	106
2,4,6-TNT	74	76
2,6-DNT	85	86
2,4-DNT	107	111

metatrace inc. 3D 13715 Rider Trail North SPIKE DUPLICATE RECOVERY (314) 298-856

Lab	Name:_	metaTRACE	,	Contract:_	100-03		
Lap	Code:	meta	Case No.:	SAS No.:		SDG No.:	
Mati	rix Spi	ke - EPA	Sample No.:	5338, 39, 40	Level:(lo	w/med) lo	₩

COMPOUND	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	MS % REC #	QC LIMITS REC.
Phenol	6700	0	3600	E /	=====
2-Chlorophenol	6700	0	3300	1 <u>54</u> 1 49	26- 90 25-102
1,4-Dichlorobenzene	3300	0	2200	67	28-104
N-Nitroso-di-n-prop.(1)	3300	0	1700	52	41-126
1,2,4-Trichlorobenzene	3300	0	2100	64	38-107
4-Chloro-3-methylphenol	6700	0	3300	49	26-103
Acenaphthene	3300	0	1000	30*	31-137
4-Nitrophenol	6700	0	2600	39	11-114
2,4-Dinitrotoluene	3300	0	1400	42	28- 89
Pentachlorophenol	6700	0	0	0*	17-109
Pyrene	3300	0	2800	85	35-142

	SPIKE ADDED	MSD CONCENTRATION	MSD %	S -	OC L	IMITS
COMPOUND	(ug/Kg)	(ug/Kg)	REC #	RPD #	RPD	REC.
Phenol 2-Chlorophenol	6700	4800	72	14	=== ===	===== 26- 90
1,4-Dichlorobenzene	<u>6700</u> 3300	3300	<u>49</u> 6*	0 84*	50 27	25-102 28-104
N-Nitroso-di-n-prop.(1)	3300	1900 1600	58	5	38	41-126
4-Chloro-3-methylphenol	6700	6000	90	- 14 29	23 33	38-107 26-103
Acenaphthene	3300 6700	1900	58 72	22* 30	19	31-137
2,4-Dinitrotoluene	3300	2900	88	35	50 47	11-114 28- 89
PentachlorophenolPyrene	6700 3300	2200	3* 1 182*	100*	47 36	17-109
					20	35-142

(1) N-Nitroso-di-n-propylamine

Column to be used to flag recovery and RPD values with an asterisk Values outside of QC limits

RPD:_ pike	4 Reco	out of very:	11 5 ou	outsi t of _	de li	mits outside	limi	ts		
OMMEN										

3D **metgirace** NATRIX715 FIRET MATRIX SPIKE ESTIPLITY CATE RECOVERY (314) 298-8566

Lab Name: metaTRACE	Contract: 100-03
Lab Code:meta Case No.:	SAS No.: SDG No.:
Matrix Spike - EPA Sample No.: <u>5344</u>	, 45, 46 Level: (low/med) low

COMPOUND	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	MS % REC #	QC LIMITS REC.
Phenol	6700		=======	======	=====
2-Chlorophenol	6700		3900	<u>67</u> 58	26- 90 25-102
1,4-Dichlorobenzene	3300	0	1800	54	28-104
N-Nitroso-di-n-prop.(1)	3300	0	2000	61	41-126
1,2,4-Trichlorobenzene	3300	0	1700	52	38-107
4-Chloro-3-methylphenol	6700	1	4000	60	26-103
Acenaphthene	3300	10	1300	39	31-137
4-Nitrophenol	6700	0	3300	49	11-114
2,4-Dinitrotoluene	3300	01	1700	52	28- 89
Pentachlorophenol	6700	0	3100	46	17-109
Pyrene	3300	56	3500	104	35-142
					i i

Phenol 6700 4000 2-Chlorophenol 6700 3100		RPD #	RPD	IMITS REC.
2 chrotophenol 6700 3100 1,4-Dichlorobenzene 3300 1200 N-Nitroso-di-n-prop.(1) 3300 2300 1,2,4-Trichlorobenzene 3300 900 4-Chloro-3-methylphenol 6700 4000 Acenaphthene 3300 800 4-Nitrophenol 6700 5600 2,4-Dinitrotoluene 3300 1400 Pentachlorophenol 6700 4200 Pyrene 3300 1400	60 46 36 70 27* 60 24* 84 42 63 42		===== 35 50 27 38 23 33 19 50 47 47 36	===== 26- 90 25-102 28-104 41-126 38-107 26-103 31-137 11-114 28- 89 17-109 35-142

(1) N-Nitroso-di-n-propylamine

Column to be used to flag recovery and RPD values with an asterisk Values outside of QC limits

$ ext{RPD:} 3$ out of 1 opike Recovery: 2	<u>l</u> outside limits out of <u>22</u> outside limits
COMMENTS:	

3D **THE MATRIX SPIKE FOUR PLY CAPTED RECOVERY** (314) 298-8566

Lab Name: metaTRACE	Contract: 100-03
Lab Code: meta Case No.:	SAS 'No.: SDG No.:
Matrix Spike - EPA Sample No.: 5350,	51, 52 Level: (low/med) low

!	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	*	LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC #	REC.
			=======================================	=====	=====
Phenol	6700	<u>14J</u>	5400I	80	26- 90
2-Chlorophenol	6700	111J	4400	65	25-102
1,4-Dichlorobenzene	3300	10	2100	64	28-104
N-Nitroso-di-n-prop.(1)	3300	10	2000	61	41-126
1,2,4-Trichlorobenzene	3300	0	2500	76	38-107
4-Chloro-3-methylphenol	6700	0	5200	78	26-103
Acenaphthene	3300	0	1600	48	31-137
4-Nitrophenol	6700	0	4800	72	11-114
2,4-Dinitrotoluene	3300	0	2200	67	28- 89
Pentachlorophenol	6700	0	3700	55	17-109
Pyrene	3300	0	3300	100	35-142

1	SPIKE	MSD	MSD		1	
<u> </u>	ADDED	CONCENTRATION	*	Q	QC L	IMITS
COMPOUND	(ug/Kg)	(ug/Kg) [REC #	RPD #	RPD	REC.
Phenol	6700		=====	=====	=====	=====
	6700	3700	55	18	35	26- 90
2-Chlorophenol	6700	2800	42	21	50	25-102
1,4-Dichlorobenzene	3300	1 1300 1	39	24	27	28-104
N-Nitroso-di-n-prop.(1)	3300	1400	42	18	38	41-126
1,2,4-Trichlorobenzene	3300	1500	45	26*	23	38-107
4-Chloro-3-methylphenol	. 6700	3700	55	17	33	26-103
Acenaphthene	3300	1100	33	18	19	31-137
4-Nitrophenol	6700	3400	51	17	50	11-114
2,4-Dinitrotoluene	3300	1600	48	16	47	28- 89
Pentachlorophenol	6700	2800	42	13	47	17-109
Pyrene	3300	2700	82	10	36	35-142
						i

(1) N-Nitroso-di-n-propylamine

Ħ	Column	to be used	to	flag recovery	and	RPD	values	with	an	actorick
*	Values	outside of	OC	limits	۵۵		·azacs	W 1 C11	an	d3CCL13K

RPD: 1 Spike Reco	out of <u>11</u> outside limits overy: <u>0</u> out of <u>22</u> outside limits	
COMMENTS:		

SOIL PESTICIDE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	<u>metaTRACE</u>	,	Contract: 100-0	3
Lab Code:	meta	Case No.:	SAS No.:	SDG No.:
Matrix Sp	ike - EPA	Sample No.: _	5342 MS Level: 5343 MSD	(low/med)

COMPOUND	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	(ug/Kg)	REC #	QC LIMITS REC.
gamma-BHC (Lindane) Heptachlor Aldrin Dieldrin Endrin 4,4'-DDT	26.7 26.7 26.7 66.7 66.7	0.0 0.0 0.0 0.0 0.0	13.03 9.07 8.89 39.24 39.42 203.18	33.3* 58.8 59.1	46-127 35-130 34-132 31-134 42-139

COMPOUND	SPIKE ADDED (ug/Kg)	MSD CONCENTRATION (ug/Kg)	MSD % REC #	RPD #	-	IMITS REC.
gamma-BHC (Lindane) Heptachlor Aldrin Dieldrin Endrin 4,4'-DDT	26.7 26.7 26.7 66.7 66.7	7.72 7.11 6.17 32.30 27.73 377.73	28.9* 26.6* 23.1* 48.4 41.6* 566.3*	51.2* 24.4 36.2 19.4 34.7 60.1*	50 31 43 38 45 50	46-127 35-130 34-132 31-134 42-139 23-134

- # Column to be used to flag recovery and RPD values with an asterisk
- * Values outside of QC limits

RPD: 2 Spike Recov	out of 6 outside limits very: 8 out of 12 outside limits
COMMENTS:	

SOIL PESTICIDE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	metaTRACE		Contract:	100-03	
Lab Code:	_meta	Case No.:	_ SAS No.:	SDG	No.:
Matrix Sp	ike - EPA		45 MS 45 MSD	Level: (low/med	a)

COMPOUND	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	(ug/Kg)	REC #	,
gamma-BHC (Lindane) Heptachlor Aldrin Dieldrin Endrin 4,4'-DDT	26.7 26.7 26.7 66.7 66.7	0.0 0.0 0.0 0.0 0.0 0.0	9.31 21.59 13.66 20.77 29.90 89.55		46-127 35-130 34-132 31-134 42-139 23-134

COMPOUND	SPIKE ADDED (ug/Kg)	MSD CONCENTRATION (ug/Kg)	MSD % REC #	* RPD #		IMITS REC.
gamma-BHC (Lindane) Heptachlor Aldrin Dieldrin Endrin 4,4'-DDT	26.7 26.7 26.7 66.7 66.7	8.92 21.51 14.30 20.60 29.41 84.07	33.4* 80.6 53.6 30.9* 44.1 126.0	4.4 0.4 4.6 0.6 1.6 6.4	50 31 43 38 45 50	46-127 35-130 34-132 31-134 42-139 23-134

- # Column to be used to flag recovery and RPD values with an asterisk
- * Values outside of QC limits

RPD: 0 out of 6 outside limits Spike Recovery: 4 out of 12 outside limits
COMMENTS:

SOIL PESTICIDE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	metaTRACE	<u> </u>	Contract: 100	_03
Lab Code:	meta	Case No.: _	SAS No.:	SDG No.: AA05714
Matrix Spi	lke - EPA	Sample No.:	5714 MS Leve	el:(low/med) low

СОМРОИИД	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	REC #	
gamma-BHC (Lindane) Heptachlor Aldrin Dieldrin Endrin 4,4'-DDT	26.7 26.7 26.7 66.7 66.7 66.7	0.0 0.0 0.0 0.0 0.0 0.0	20.3 27.6 14.5 46.0 21.8 0.0	103.4 54.3 69.0 32.7	46-127 35-130 34-132 31-134 42-139 23-134

СОМРОИИД	SPIKE ADDED (ug/Kg)	MSD CONCENTRATION (ug/Kg)	REC #	* TRPD #	RPD	IMITS REC.
gamma-BHC (Lindane) Heptachlor Aldrin Dieldrin Endrin 4,4'-DDT	26.7	14.4	53.9	34.0	50	46-127
	26.7	10.7	40.1	88.3*	31	35-130
	26.7	7.44	27.9*	64.2*	43	34-132
	66.7	29.2	43.8	44.7*	38	31-134
	66.7	26.0	39.0*	17.6	45	42-139
	66.7	8.31	12.5*	200*	50	23-134

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 4 Spike Recov	out of 6 outsi ery: 4 out of	ide limits 12 outside	e limits	
COMMENTS:				

DISTRIBUTION LIST

U.S. EPA Region VII

B. Katherine Biggs (3 copies)
Environmental Review Branch
U.S. Environmental Protection Agency
Region VII
725 Minnesota Avenue
Kansas City, Kansas 66101

Missouri Department of Natural Resources

Dave Bedan (3 copies) State of Missouri Department of Natural Resources Post Office Box 176 Jefferson City, Missouri 65012

Argonne National Laboratory

John Peterson
Energy and Environmental Systems Division
Argonne National Laboratory
9700 South Cass Avenue, Building 362
Argonne, Illinois 60439

Oak Ridge Operations

H.W. Hibbitts, SE-31 U.S. Department of Energy Environmental Protection Agency Oak Ridge Operations Office Post Office Box 2001 Oak Ridge, Tennessee 37830

A.P. Avel, CE-53 (letter w/o encl) U.S. Department of Energy Environmental Protection Agency Oak Ridge Operations Office Post Office Box 2001 Oak Ridge, Tennessee 37830

W.F. Manning, CE-50 (letter w/o encl)
U.S. Department of Energy
Assistant Manager for Construction and Engineering
Oak Ridge Operations Office
Post Office Box 2001
Oak Ridge, Tennessee 37830

Department of the Army

Jack D. Generaux Civil Engineer/Project Manager Superfund Branch U.S. Army Corps of Engineers 601 East 12th Street Kansas City, Missouri 64106

Commander

U.S. Army Toxic and Hazardous Materials Agency ATTN: CETH-IR-R (Dr. Robert York) Aberdeen Proving Ground, Maryland 21010-5401

Karl J. Daubel Environmental Coordinator Weldon Spring Training Area U.S. Department of the Army Highway 94 South, Rural Route 2 Box 226 St. Charles, Missouri 63303

U.S. Geological Survey

Dan Bauer U.S. Department of Interior Geological Survey, Mail Stop 200 1400 Independence Road Rolla, Missouri 65401

State and Local

Stanley Remmington 2524 Westminster Drive St. Charles, Missouri 63301

Honorable Gerald Ohlms (letter w/o encl) St. Charles County Courthouse 118 North Second Street St. Charles, Missouri 63301

Daryl Roberts, Chief Bureau of Environmental Epidemiology State of Missouri Department of Health Post Office Box 570 Jefferson City, Missouri 65102

William Dieffenbach, Supervisor Environmental Services State of Missouri Department of Conservation Post Office Box 180 Jefferson City, Missouri 65102-0180

DOE Headquarters

Gale Turi
U.S. Department of Energy
Division of Facility and Site Decommissioning
NE-23, Room D-424, HQ-GTN
19902 Germantown Road
Germantown, Maryland 20545

Oak Ridge National Laboratory

Park Owen
Remedial Action Program Information Center
Oak Ridge National Laboratory
Martin-Marietta Energy Systems, Inc.
Post Office Box X
Oak Ridge, Tennessee 37831

Office of Scientific and Technical Information (2 copies) U.S. Department of Energy Post Office Box 62
Oak Ridge, Tennessee 37831

Oak Ridge Associated Universities

J.D. Berger Oak Ridge Associated Universities Post Office Box 117 Oak Ridge, Tennessee 37831-0117

Repositories

Cobbs Hall Lindenwood College St. Charles, Missouri 63301

Kathryn Linneman Branch St. Charles City/County Library 2323 Elm Street St. Charles, Missouri 63301

Spencer Creek Branch St. Charles City/County Library 425 Spencer Road St. Peters, Missouri 63376

Administrative Record

WSSRAP Public Document Room Route 2, Highway 94 South St. Charles, Missouri 63303